Welcome to the Conservation Lecture Series

https://www.wildlife.ca.gov/Conservation/Lectures

Questions? Contact Margaret.Mantor@wildlife.ca.gov

Multi-threaded wetland channels and the implications for salmonids and ecosystem rehabilitation

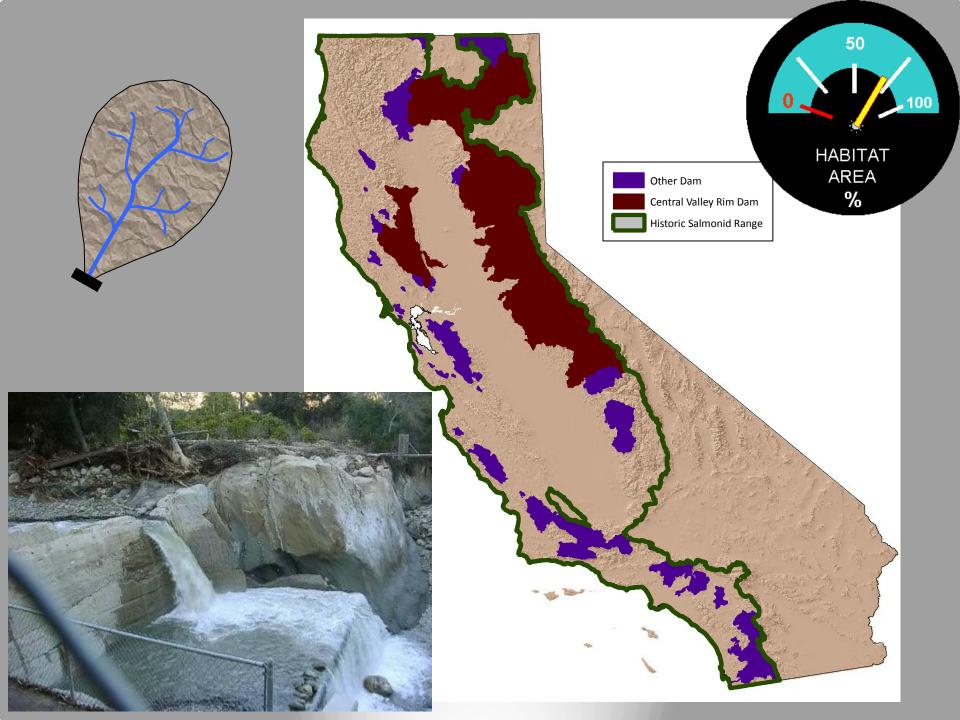
Lauren Hammack

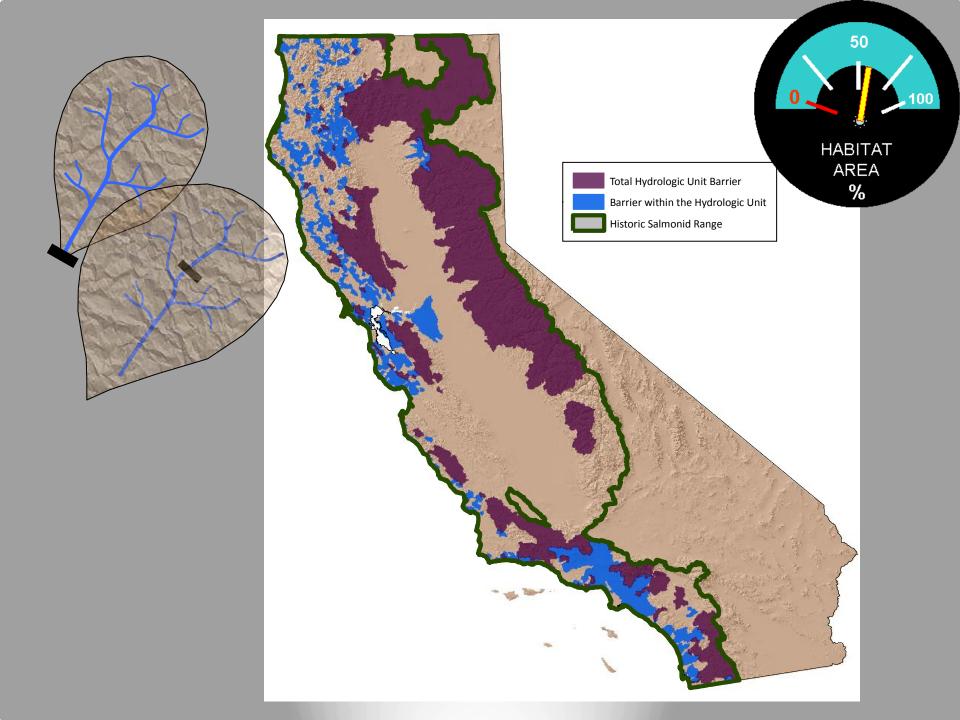
PRUNUSKE CHATHAM, INC.

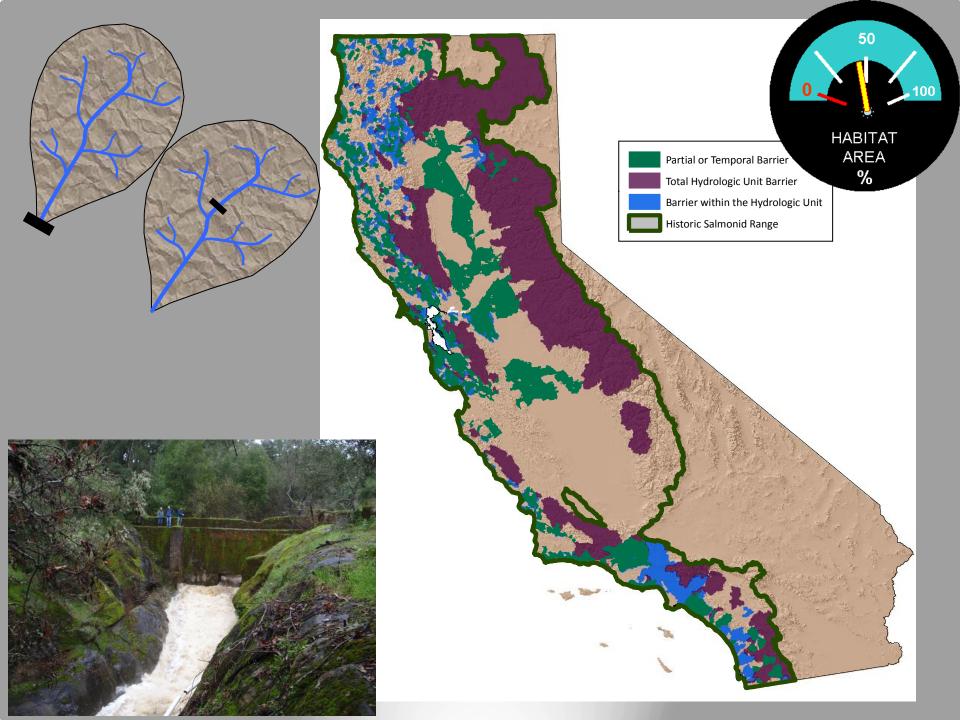
Brian Cluer, PhD

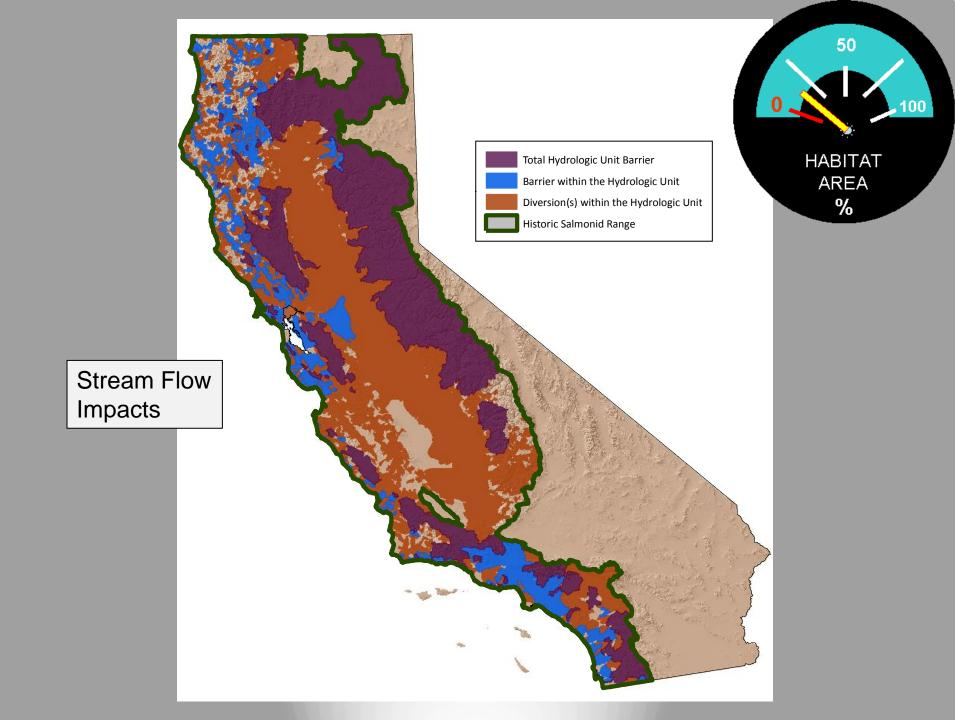
Presentation Agenda

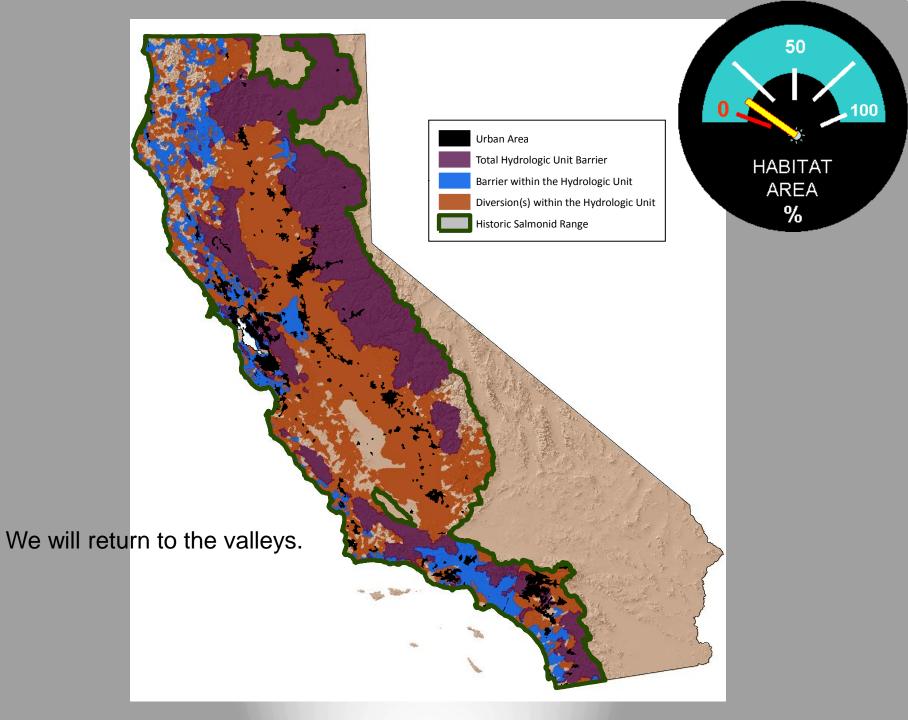
- 1. Riparian wetland loss in California (Cluer)
- 2. Overview of channel types (Cluer)
- 3. Stream Evolution Model and ecosystem value of multi-threaded channels (Cluer)
- 4. Examples of multi-threaded channel restoration projects and opportunities in the river-estuary ecotone (Hammack)
- 5. Importance of multi-threaded channels in salmonid life history (Hammack)

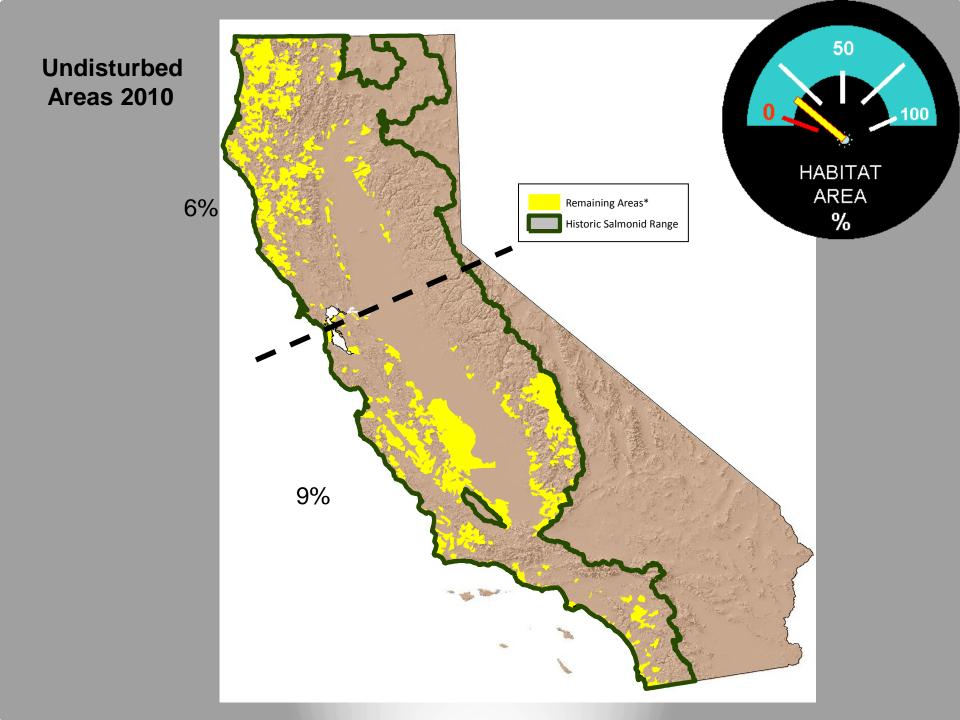

Historic Salmon Range -Drainage Areas




Credit: Charleen Gavette



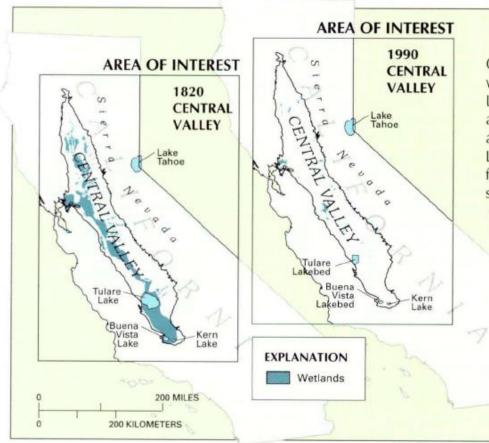




1900 to 1950--Changing Technology

The first half of the twentieth century was a time of ambitious engineering and drainage operations. Two World Wars, a rapidly growing population, and industrial growth fueled the demand for land as industry and agriculture propelled the United States to the status of a world leader. Technology was increasingly important in manipulation of the Nation's water resources. Two of the most notable projects that affected wetlands were California's Central Valley Project and the lock and dam system on the Mississippi River.

Although draining had begun one-half century earlier, wetland modification in the Central Valley accelerated early in the 20th century. By the 1920's, about 70 percent of the original wetland acreage had been modified by levees, drainage, and water-diversion projects (Frayer and others, 1989). In the 1930's, large-scale flood-control projects, diversion dams, and water-control structures were being built on the tributary rivers entering the valley.


National Water Summary on Wetland Resources United States Geological Survey Water Supply Paper 2425

Technical Aspects of Wetlands History of Wetlands in the Conterminous United States

By

Thomas E. Dahl, U.S. Fish and Wildlife Service Gregory J. Allord, U.S. Geological Survey

History of Valley Modifications ?

Originally the Central Valley of California was very different than it is now. Tulare Lake held water in a basin with a surface area approximately four times the surface area of Lake Tahoe. Buena Vista and Kern Lakes also held water as runoff accumulated from the Sierra Nevada. The rivers and streams that flowed into the Central Valley were lined with bottom-land forests composed of willow, sycamore, oak, elder, poplar, and alder; lush stands of wetland grasses and tules dominated the valley floors and prairies (Hundley, 1992). Prior to the mid-1800's, about 4 million of the 13 million acres that made up California's Central Valley were estimated to be wetland.

Figure 9. Wetlands of the Central Valley of California, circa 1820 (left) and 1990 (right). (Source: U.S. Fish and Wildlife Service, Status and Trends, unpub. data, 1994.)

onal

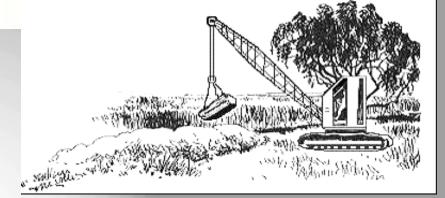


Figure 2. States with notable wetland loss. 1780's to mid-1980's. (Source: Modified from Dahl, 1990.)

U.S. Geological Survey Water-Supply Paper 2425

Scale of hydromodification and habitat elimination is difficult to grasp.

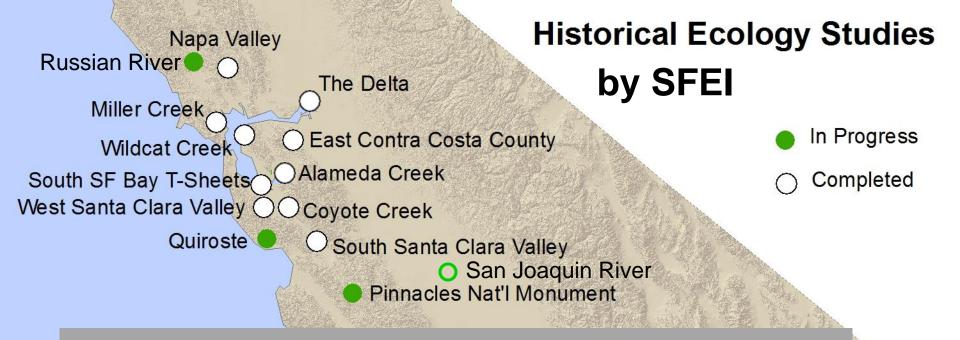
History of landscape hydromodification is poorly documented, and forgotten by many.

Netherlands

LaGrand River, OR

Tile drain networks

111


Expedite runoff, drain upper soil moisture zones, diminish aquifers, make the hydrosystem smaller and less resilient.

Valleys

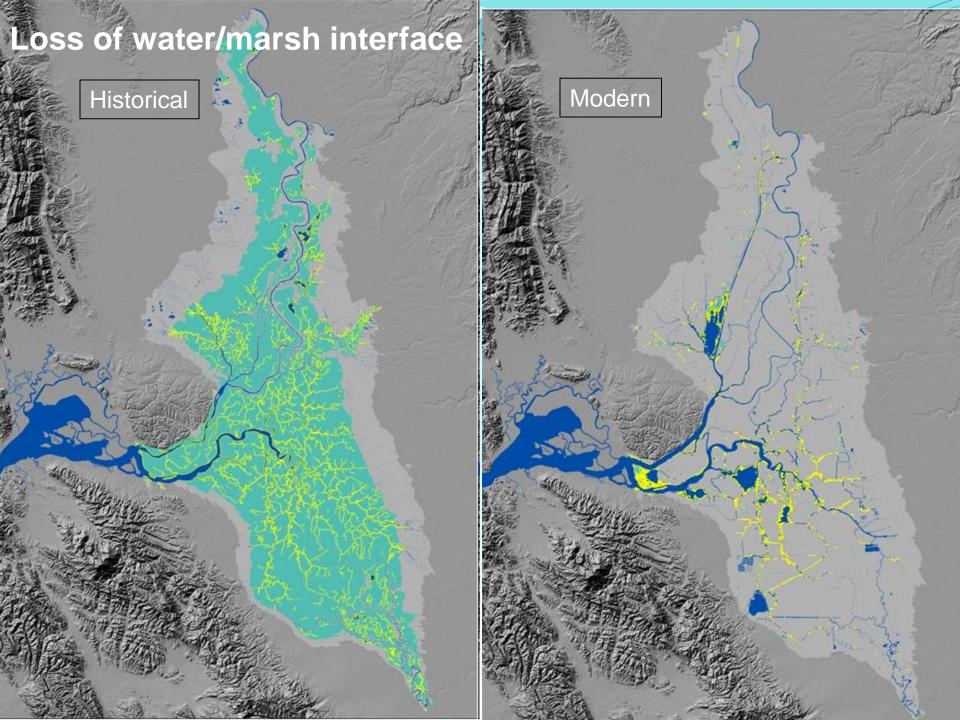
What were presettlement habitats like, WRT salmonids ?

Most river systems had major wetland complexes

- \rightarrow provide variability in timing and depth
- \rightarrow support diverse life history strategies
- \rightarrow reliable habitat, refuge

Santa Clara River, Ventura County

SF Estuary EcoAtlas


Southern California T-Sheet Atlas

Southern California T-Sheets Phase II

Ballona Creek San Gabriel River

San Diego County Lagoons Tijuana River

River - 2007 Floodplain

13

10 11 12

9

Carson showed us our first picture of what Central Valley salmon actually could look like.

Jeffres et al. 2008

RIVER RESEARCH AND APPLICATIONS

River Res. Applic. (2013)

Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rra.2631

A STREAM EVOLUTION MODEL INTEGRATING HABITAT AND ECOSYSTEM BENEFITS

B. CLUER^{a*} and C. THORNE^b

^a Fluvial Geomorphologist, Southwest Region, NOAA's National Marine Fisheries Service, Santa Rosa, California, USA ^b Chair of Physical Geography, University of Nottingham, Nottingham, UK

ABSTRACT

For decades, Channel Evolution Models have provided useful templates for understanding morphological responses to disturbance associated with lowering base level, channelization or alterations to the flow and/or sediment regimes. In this paper, two well-established Channel Evolution Models are revisited and updated in light of recent research and practical experience. The proposed Stream Evolution Model includes a precursor stage, which recognizes that streams may naturally be multi-threaded prior to disturbance, and represents stream evolution as a cyclical, rather than linear, phenomenon, recognizing an *evolutionary cycle* within which streams advance through the common sequence, skip some stages entirely, recover to a previous stage or even repeat parts of the evolutionary cycle.

The hydrologic, hydraulic, morphological and vegetative attributes of the stream during each evolutionary stage provide varying ranges and qualities of habitat and ecosystem benefits. The authors' personal experience was combined with information gleaned from recent literature to construct a fluvial habitat scoring scheme that distinguishes the relative, and substantial differences in, ecological values of different evolutionary stages. Consideration of the links between stream evolution and ecosystem services leads to improved understanding of the ecological status of contemporary, managed rivers compared with their historical, unmanaged counterparts. The potential utility of the Stream Evolution Model, with its interpretation of habitat and ecosystem benefits includes improved river management decision making with respect to future capital investment not only in aquatic, riparian and floodplain conservation and restoration but also in interventions intended to promote species recovery. Copyright © 2013 John Wiley & Sons, Ltd.

KEY WORDS: Stream Evolution Model (SEM); channel evolution; freshwater ecology; habitat; conservation; river management; restoration; climate resilience

Received 1 November 2012; Accepted 13 November 2012

Paper Outline:

• PART I Geomorphology

- Channel Evolution Models:
- Stream Evolution Model:
- PART II Linkages:
 - Hydrogeomorphic Attributes
 - Habitat and Ecosystem Benefits
- Management and Restoration Implications

Channel patterns reflect the processes that created them. There exists a continuum of patterns because there is a continuum of processes.

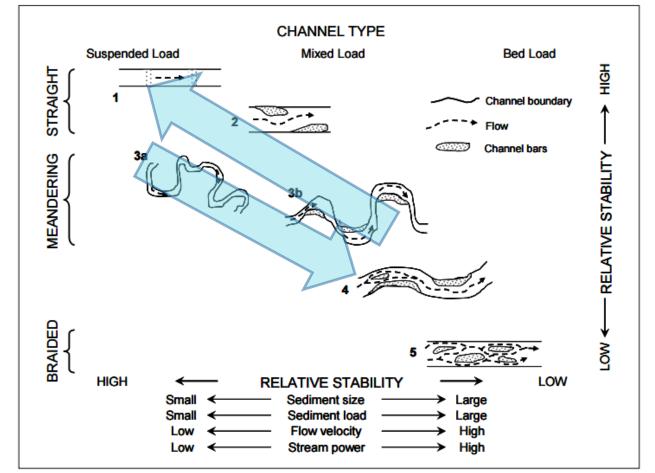
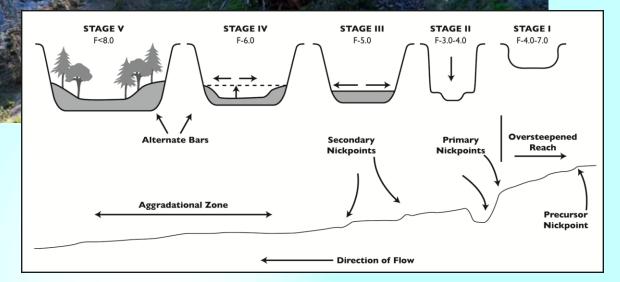
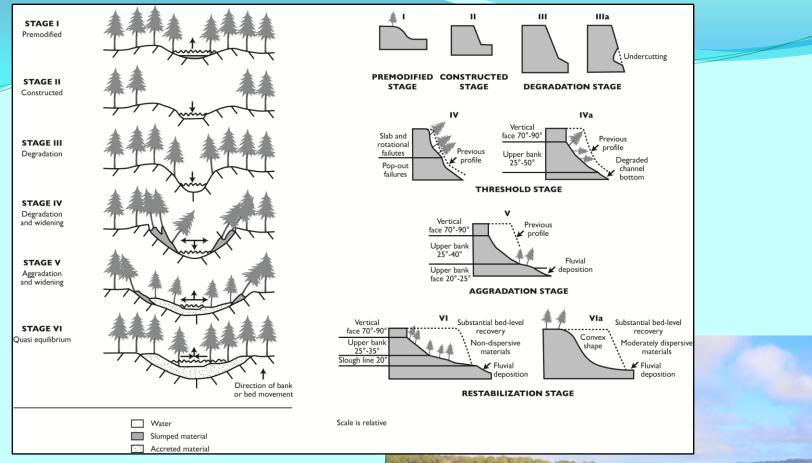


Figure 13. A qualitative classification of stream channels based on pattern (straight, meandering, or braided) and type of sediment load, along with flow and sediment variables and relative stability with regard to average erosional activity. From Schumm (1981).

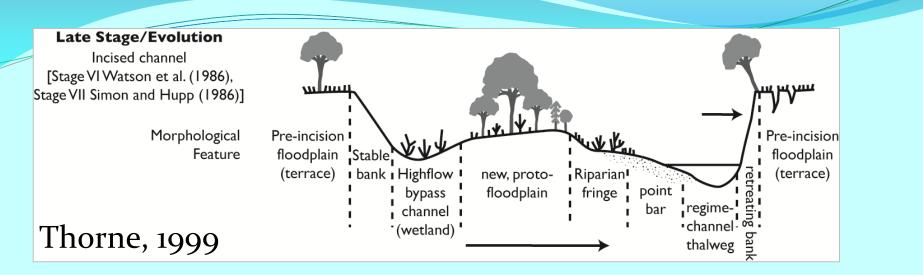
This framework allows observers to substitute space for time; one can observe an evolution over space (reaches) that relates to how channel change might occur over time at a location.


IS UT


A useful structure for understanding the effects of disturbance, for predicting response.

Geomorphologists refer to this framework as a channel's trajectory.

Putah Creek, CA


Schumm, Harvey, Watson, 1984

Simon and Hupp, 1986

The physical processes that form channels occur over a continuum so there must be successional stages, and corresponding attributes.

, LaGrand River, OR

Recent detailed field research challenges the concept of 'ideal' single-thread channel geometry.

- Sear, Brown : Europe
- Montgomery and Collins : PNW
- Walter and Merrits : E US
- Grossinger et al. : CA

Schumm <i>et al</i> ., 1984	Simon and Hupp, 1986	SEM		Description
		0. Anas	tomosing	Pre-disturbance, dynamically meta-stable network of anabranching channels and floodplain with vegetated islands supporting wet woodland or grassland.
				$Qs_{in} \ge Qs_{out}$, $h \ll h_c$
I. Undisturbed	I. Pre-modified		1.Sinuous	Dynamically stable and laterally active channel within a floodplain complex. Flood return period 1-5 yr range. $Qs_{in} \ge Qs_{out}$, $h \ll h_c$
	II. Constructed		2. Channelized	$Q_{\text{Nn}} \leq Q_{\text{out}}$, $n \ll n_c$ Re-sectioned land drainage, flood control, or navigation channels. $Q_{\text{Sin}} \leq Q_{\text{Sout}}$, $h > h_c$
II. Degradation	III. Degradation		3. Degrading	Incising and abandoning its floodplain. Featuring head cuts, knick points or knick zones that incise into the bed, scours away bars and riffles and removes sediments stored at bank toes. Banks stable geotechnically. $Q_{S_{in}} < Q_{S_{out}}$, $h > h_c$
		nels	3s. Arrested degradation	Stabilized, confined or canyon-type channels. Incised channel in which bed lowering and channel evolution have been halted because non-erodible materials (bed rock, tight clays) have been encountered.
		nı		$Qs_{in} \sim Qs_{out}, h > h_c$
III. Rapid Widening	IV. Degradation and widening	ad Cha	4. Degradation and widening	Incising with unstable, retreating banks that collapse by slumping and/or rotational slips. Failed material is scoured away and the enlarged channel becomes disconnected from its former floodplain, which becomes a terrace.
		ē		$Qs_{in} < Qs_{out}, \ h > h_c$
		[hı	4-3. Renewed	Further head cutting within Stage 4 channel.
IV. Aggradation	V. Aggradation and widening	Single ⁷	becomes a terrace. $Qs_m < Qs_{out}$, $h > h_c$ 4-3. Renewed incision 5. Aggrading and widening and widening 6. Quasi-equilibrium 6. Quasi-equilibrium	Bed rising, aggrading, widening channel with unstable banks in which excess load from upstream together with slumped bank material build berms and silts bed.
				$Qs_{in} > Qs_{out}, h \sim h_c$
V. Stabilization	VI. Quasi- equilibrium			channel with two-stage cross-section featuring regime channel inset within larger, degraded channel. Berms stabilize as pioneer vegetation traps fine sediment, seeds and plant propagules.
	VII. ^[1] Late-stage evolution		7. Laterally active	$\begin{array}{l} \label{eq:stabilizer} \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
		8. Anas	tomosing	Meta-stable channel network. Post-disturbance channel featuring anastomosed planform connected to a frequently inundated floodplain that supports wet woodland or grassland that is bounded by set-back terraces on one or both margins. $Qs_{in} \ge Qs_{out}$, $h \ll h_c$

Floodplain

Disconnected

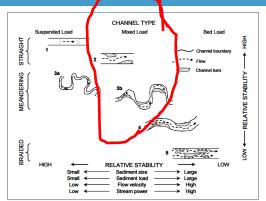
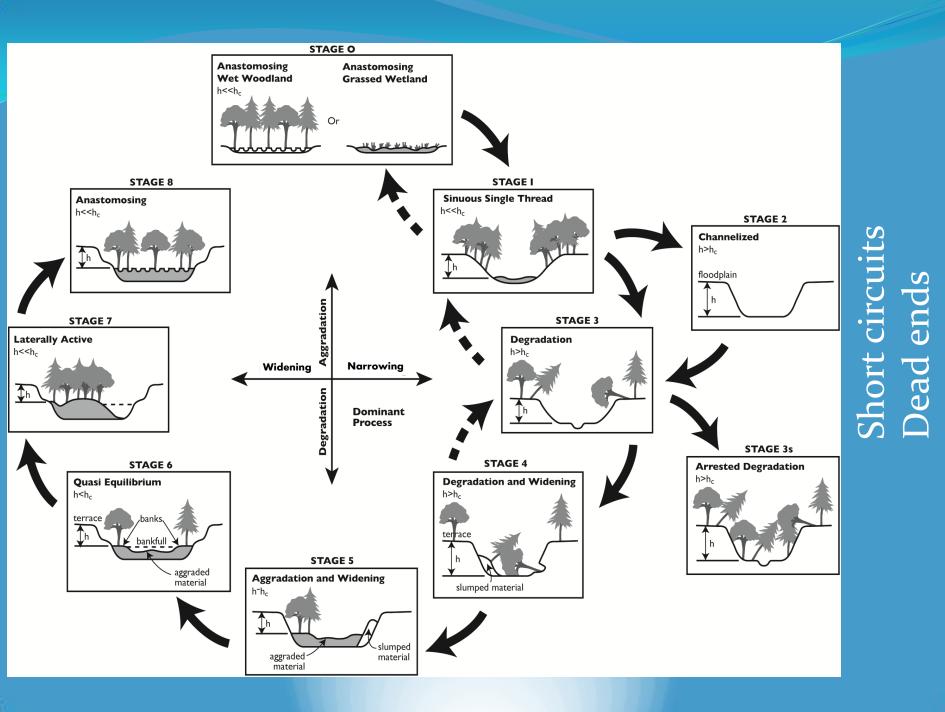
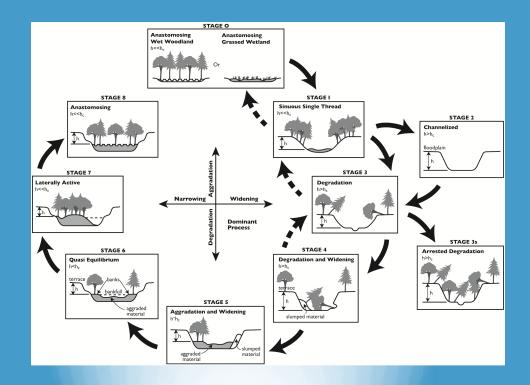
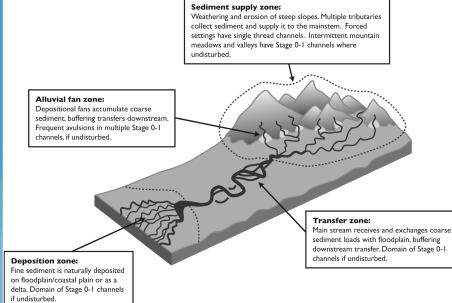



Figure 13. A qualitative classification of stream channels based on pattern (straight, meandering, or braided) and type of sediment load, along with flow and sediment variables and relative stability with regard to average erosional activity. From Schumm (1981).


Floodplain

SEM highlights two ideas:

Stream systems are not represented by their channel; there is a web of bio-geo process interactions upstream, in the past, and nearby resulting in a dynamic stream corridor and a continuum of channel forms.


There is no "start point" or "end point" to channel evolution.

SEM: broader definition and utility than incised channels, emphasis on;

- Watershed scale interconnectedness of sediment, vegetation, and hydrologic regimes.
- Valley-stream system processes & outcomes vs. channel form which is only a snapshot of its past.

Where do Stage O streams occur?
Over a range of scales and locales.
Where do we find them today?

Sediment supply zone:

Weathering and erosion of steep slopes. Multiple tributaries collect sediment and supply it to the mainstem. Forced settings have single thread channels. Intermittent mountain meadows and valleys have Stage 0-1 channels where undisturbed.

Alluvial fan zone:

Depositional fans accumulate coarse sediment, buffering transfers downstream. Frequent avulsions in multiple Stage 0-1 channels, if undisturbed.

Transfer zone:

Main stream receives and exchanges coarse sediment loads with floodplain, buffering downstream transfer. Domain of Stage 0-1 channels if undisturbed.

Deposition zone:

Fine sediment is naturally deposited on floodplain/coastal plain or as a delta. Domain of Stage 0-1 channels if undisturbed.

PART II

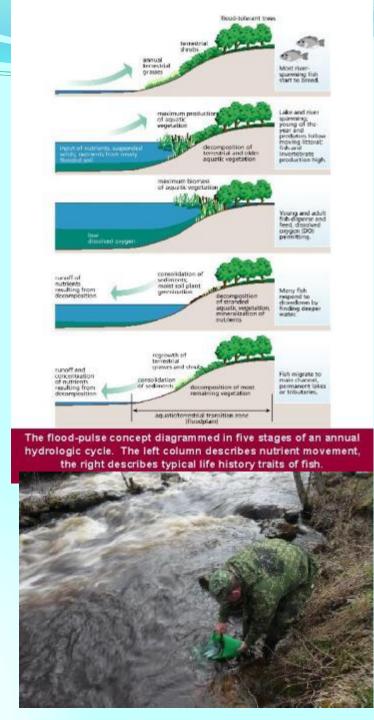
Linking Habitat and Ecosystem Benefits to Hydrogeomorphic Attributes

Principles of functional ecology link the SEM Stages to habitat and ecosystem benefits.

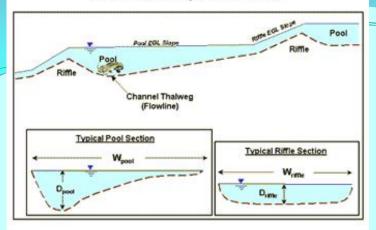
- Stream morphology interacts with flow and sediment regimes, channel boundary characteristics, and water quality to produce, maintain and renew habitat.
- The potential for a stream to support resilient and diverse ecosystems increases with morphological diversity.
- Morphological adjustments (SEM Stage) have implications for diversity and richness of habitat and ecosystem services.

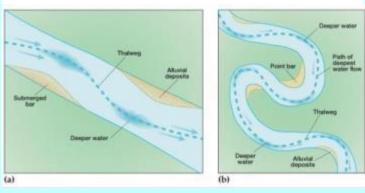
Primary literature:

Harper et al 1995, Padmore 1997, Newson and Newson 2000, Thorpe et al 2010]


Physical Attributes

Hydrologic regime


- Base flows
 - Habitability and biodiversity
- Floods and flood pulses timing
- Floodplain connectivity
 - Hydroperiod, attenuation, recharge


Hydraulics

- Hydraulic diversity
 - Dead water
 - White water

Channel Geometry Characteristics

Geomorphic

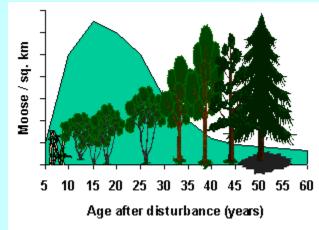
Physical Attributes

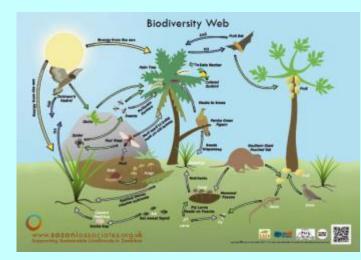
attributes

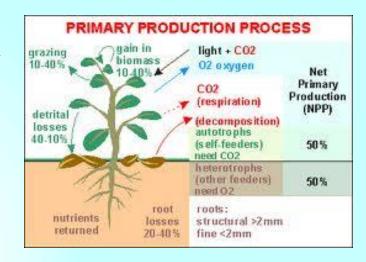
- Channel dimensions and geometry
 - Wetted area
 - Length and complexity of the shoreline
- Channel features
 - Bedforms, bars, islands, riparian margins
- Instream sediment storage
- Proportion of shoreline stable or unstable
- Substrate
 - Size and distribution, sorting, patchiness

Physical Attributes

Floodplain attributes


- Extent and Connectivity
 - Inundation surfaces
 - Duration, timing
 - Topo features on floodplain
 - Processes
 - Sediment storage
 - Carbon sequestration
 - Nutrient processing


Vegetation attributes


- Presence of plants
 - Aquatic, emergent, riparian, floodplain
- Leaf litter
 - Primary production support
- Tree trunk recruitment
 - Cycling nutrients and carbon
 - Hydraulic and morpho diversity
 - Channel stability
 - Sediment storage
 - Sorting and patchiness
 - Forcing hyporheic flow
- Riparian succession, dynamic landscape

Habitat and ecosystem benefits

• Biota

- Biodiversity (species richness and trophic diversity) varies in relation to morphologic diversity of the channel and the extent and frequency of floodplain connectivity
- Proportion of native plants
- 1° and 2° productivity; in proportion to the hydrologic, hydraulic, morphologic and vegetative diversity

Resilience

- Floods
 - Stage resilient edges
 - Floodplain
- Droughts
 - Water table connection
 - Availability of deep pools
- Able to withstand disturbances

Each stream Stage is associated with a gradient of hydrogeomorphic processes, attributes, and ranges and qualities of habitat and ecosystem benefits.

- Assessment per stage:
 - Interpretation of processes and resulting physical attributes,
 - Informed by published relationships between stream attributes, functional habitats, and freshwater ecology.

	SEM Stage		Physical Attributes		Vegetation Attributes				
_	-	Hydrologic Regime	Hydraulics and Substrate	Dimensions and Morphology					
 Anastomosing. Dynamically meta-stable network of anabranching channels with vegetated islands. 		Floods diffused over the full width of the floodphains os flood peaks are maximally attenuated. Flood pulses diffused and subdued. High water table and close connection between stream flow and ground water ensures reliable base flows and continuous hyporhesis, though flow in smaller	Multiple channels provide maximum in- channel hydraulic diversity through partition of discharge between branches that widens range of in-channel depth/velocity combinations. Anabranches create multiple, marginal deadwaters. Wide range of substrate grain sizes arranged into numerous, well- sorted bed patches.	Multiple anabranches, islands and side channels maximize. Morphological Teatures abound in-channel and on the extensive and fully connected floodplain, providing a high capacity to store sediment and wood and supporting diverse wetlands. Bank heights are low with stability enhanced by riparian margins, but some river cliffs are generated by localised erosion. Network and floodplain are highly resilient to disturbance,	Frequent, small channel adjustments and high, reliable water table create ubiquitous settings for proliferation and succession of aquatic, emergent, riparian and floodplain plants. Wet woodlands on islands and floodplain supply and retain wood, and widespread vegetation proximal to channels produces abundant leaf litter.				
_	1.Sinuous, single-	anabranches may be ephemeral.	Dance of in abando	buffering the system.	Desenances in hydrophic and morphological				
	 Sinuous, single- thread. Stable and laterally active. Sediment sorting and transfer. 	Floods up to bankfull discharge retained in-channel reducing attenuation. Larger floods still spill to floodplain, attenuating their peaks. Close connection between groundwater and stream flow reliable base flows and goot hyporhesis.	Range of in-channel	Wetted area relative to flow, shoreline length and inty decrease due to switch to single channel. This and bars remain widespread, frequency the sand diffuences is greatly reduced, with river cliffs found along talain extent and humber of side channels talans the channels talain extent and humber of side channels	Decreases in hydrautic and morphological diversity trigger reductions in quantity and quality of aquatic, riparian and, especially, emergent plants. Floodplain communities remain diverse, but transition from wetland to more terrestrial assemblages. Reductions in extent of woodlands due to switch from multiple to a single channel decrease recruitment of wood and leaf litter.				
	 Channelized. Re- sectioned large flood control, or navigation channels. Degrading. Incising and abandoning its floodplain. Banks stable geotechnically. 	Flood flows retained design discharge, etc pulses. Flood atter Efficient drainage recession and log impaired. Concentrates p flood peaks in- amplifying floo attenuation inder recharge in mine flow unreliable. If damaged or destri- and bank toes.		shoreline length and iforms and bars Capacity to store If by channel thit river cliffs thomaily of Elength and Stage 1. It channels, nei ty to store lks mostly stable the riparian zone ry with channel	Aquatic and emergent plants destroyed during construction with recovery limited to patches and narrow belts. Riparian plants only contribute wood and leaf litter if some of riparian corridor is left in place. Floodplain vegetation communities disconnected from channel may transition Aquatic and most emergent plants destroyed by incision; only seasonal and annual species remain. Riparian vegetation undercut and increasingly unstable leading to artificially elevated inputs of wood. Input of leaf litter, seeds and propagales continues, but retention reduced. Floodplain vegetation stressed due to lower water table.				
-	3s. Arrested degradation. Confined or canyon- type channels.	Concentrates a wide peaks, providing no et attenuation and maximal effects. Groundwater recht minimal, base flow unreliable hyporheic zone remains damager destroyed.		ks in dimensions and Limited capacity to usion creases. Banks they increase. Limitished	Relative stability allows for early succession in emergent and riparian plant communities, improving supply of leaf litter. Wood recruitment continues, limited by the proximity, width and contiguity of woodlands on surrounding floodplain and terrace surfaces.				
Chamber Chamber	4. Degradation and widening. Incising with unstable, retreating banks.	Concentrates an extreme range of flood peaks, negating flood attenuation and further amplifying flood pulse effects. Groundwater recharge, base flow generation and hyporheic connectivity are all dysfunctional.	Hy channels transport of work, continue to be absent or dysfunctional. Bed scour continues to adversely impact substrate sorting and patchiness.	emid be etiminate stable bu cliffs that destroy ripa shoreline length and com remain low. No recovery of and wood, and floodplain still e	Aquatic plant community remains dysfunctional due to on-going bed randation and riparian plants are destroyed tid widening. Wood recruitment may be banks are forested, though mends on trees being large using channel width.				
5	4-3. Renewed	Increased range of floods retained in-	Renewed incision maintains limited range of	Renewed scour removes embryonic	iparian and floodplain				
	incision. Further head cutting within Stage 4 channel.	bank continues to amplify flood pulse effects. Flood attenuation, groundwater recharge, base flow generation and hyporheic connectivity all remain dysfunctional.	depth/velocity, combinations and so hydraulic diversity remains low. No new marginal deadwaters are created. Channel scour effectively eliminates functionality of substrate sorting and patchiness in providing habitat and ecosystem benefits.	formed in Naga 4. Degree of disconnection channels, floodplain and wellands due to the incision increases. Any stored sediment or we flushed downstream. Continued bank retreat for cliffs that erode any remaining riparian fringe.	tepleted and tepleted and the of leaf litter but than til proximal tepends on				
	5. Aggrading and widening. Bed rising, banks stablising & berming.	No significant improvement in flood attenuation but flood pulse effects not quite as marked. Groundwater recharge remains dysfunctional, and base flows are still unreliable, but some hyporheic connectivity is recovered.	Aggradation renews depth/velocity variability that to improve hydraulic diversity. Small marginal deabdaters may develop, but these are not yet functional in providing habitat and ecosystem benefits. Bars and log jams begin to improve sediment sorting and patchiness.	Wetted area, shoreline length and complexity relative to flow all remain low. Aggradation generates some bedforms and hurs but channel remains dysfunctional with regard to effective storage of sediment and swod. Bank stability improves marginally compared to Sage 4 allowing some recovery in riparian fringe. Floodplain connectivity begins to recover due to aggradation at bed and berm formation at banks.	bern and tree community physically ann may continue (6). te proximal trees and the term may be renewed as well.				
	6. Quasi- equilibrium. Regime channel and proto-floodplain re- established.	Remains disconnected from former floodplain, but increased boundary roughness and emergent riparian stands damp flood pulse effects and reintroduce some flood attenuation. Groundwater recharge and hase flow functions begin to recover and hyporhesis continues to improve.	Developing regime channel interacts with proto-floodplain surfaces to dissipate energy and increase hydraulic diversity. Accumulation of sediment and colonization of bars and berms by emergent and riparian vegetation increases number and functionality of marginal deadwaters. Patches of contrasting substrate size and sorting develop accordingly.	Wetted area, shoreline length and complexity relative to flow all remain low. Bedforms and bars recover to pre- disturbance levels restoring some capacity to storage of sediment and wood. Bank stability continues to improve at expense of river cliffs, allowing further recovery in riparian fringe. Floodplain connectivity continues to recover and new side channels may be created, though wetlands remain disconnected.	Relatively stable channel margins and inset features provide sites for development of aquatic, emergent and riparian plant communities. Aggradation improves connectivity with and functionality of floodplain plants, maintaining wood recruitment and enhancing supply of leaf litter.				
	7. Laterally active. Regime channel develops sinuous course.	Increases in flow resistance due to development of channel and inset floodplain roughness further damp flood pulse effects while returning groundwater recharge, base flow and hyporheic functionality back close to Stage 1 level.	Development of planform sinuosity and interaction with maturing floodplain enhance hydraulic diversity and make marginal deadwaters fully functional. Substrate sorting enhanced and patchiness becomes fully functional. Hydraulic and substrate attributes recover to Stage 1 levels.	Growth of sinuous channel increases wetted area, shoreline length and complexity. Bedforms and bars persist and new islands, confluences and diffluences develop, increasing capacity to storage of sediment and wood. Renewed bank erosion at bends broadens range of bank morphologies. Extent of new side channels increases with some wetlands created.	Extent of riparian and floodplain plant communities increases at expense of opportunities for emergent plants. Stabilisation of banks reduces wood recruitment but extension and maturing of riparian and floodplain communities maintain supply of leaf litter.				
	nastomosing. Meta- e anabranching network.	Hydrologic attributes and functions similar to Stage 0 but network inset within the channel created in Stage 4 as modified in Stage 7.	Hydraulic and substrate attributes and functions similar to Stage 0, but network inset within the channel created in Stage 4 as modified in Stage 7.	Morphological attributes and functions similar to Stage 0, but wetted area, shoreline length, and extent of floodplain and its features diminished because network is inset within the valley created in Stage 4.	Hydrological, hydraulic and morphological attributes and functions similar to those of Stage 0 allow vegetation attributes to recover to pre-disturbance levels.				

Table II Physical and Vegetation Attributes

		Physical Attributes		
SEM Stage	Hydrologic Regime	Hydraulics and Substrate	Dimensions and Morphology	Vegetation Attributes
 O. Anastomosing. Dynamically meta-sta network of anabranchi channels with vegetate islands. 1.Sinuous, thread. Sta laterally ac Sediment s 	ng maximally attenuated. Flood pulses	of discharge between branches that widens range of in-channel depth/velocity combinations. Anabranches create multiple, reginal deadwaters. Wide range of substrate izes arranged into numerous, well- id patches.	Multiple anabranches, islands and side channels maximize. Morphological features abound in-channel and on the extensive and fully connected floodplain, providing a high capacity to store sediment and wood and supporting diverse wetlands. Bank heights are low with stability enhanced by riparian margins, but some river cliffs are generated by localised erosion. Network and floodplain are highly resilient to disturbance, buffering the system. Wetted area relative to flow, shoreline length and complexity decrease due to switch to single channel. Though bedforms and bars remain widespread, frequency	Frequent, small channel adjustments and high, reliable water table create ubiquitous settings for proliferation and succession of aquatic, emergent, riparian and floodplain plants. Wet woodlands on islands and floodplain supply and retain wood, and widespread vegetation proximal to channels produces abundant leaf litter. Decreases in hydraulic and morphological diversity trigger reductions in quantity and quality of aquatic, riparian and, especially, omargent plants. Elogadplain agromymiting
transfer.		ng remaining channel bstrate sorting varies between remate or point bars, with ees of armoring. Variation in ogy continues to supports a high bstrate patchiness.	adversely affecting capacity to store sediment and wood. Higher banks are less stable with river cliffs found along outer margins of bends. Floodplain extent and	emergent plants. Floodplain communities remain diverse, but transition from wetland to more terrestrial assemblages. Reductions in extent of woodlands due to switch from multiple to a single channel decrease recruitment of wood and leaf litter.
3s. Arrested degradation Confined or type channel	canyon- attenuar, attenuar	ydraulic diversity due to temnant riparian planet of the degraded	Natural or artificial stabilization locks in dimensions and morphology developed in Stage 3. Limited capacity to store sediment and wood once degradation ceases. Banks mostly stable but extent of river cliffs may increase. Functionality of the riparian zone remains diminished and channel is permanently disconnected from its floodplain and wetlands.	Relative stability allows for early succession in emergent and riparian plant communities, improving supply of leaf litter. Wood recruitment continues, limited by the proximity, width and contiguity of woodlands on surrounding floodplain and terrace surfaces.
4. Degradat widening. I With unstable retreating ba	attenuation and further amplifying	Hydraulic diversity channel scour and eta transport of woody deu continue to be absent or dy scour continues to adversely in sorting and patchiness.	Sediment inputs from bank retreat initiates limited bedform and bar development, but mass failures liminate stable banks and increase the extent of river is that destroy riparian margins. Wetted area, reline length and complexity relative to flow all dimain low. No recovery of capacity to store sediment and wood, and floodplain still disconnected.	Aquatic plant community remains dysfunctional due to on-going bed degradation and riparian plants are destroyed by rapid widening. Wood recruitment may increase if banks are forested, though retention depends on trees being large relative to increasing channel width.

	SEM Store						
	SEM Stage	Hy drologic Regime					
0. Anas	tomosing.	Floods diffused over the full width of					
Dynami	cally meta-stable	the floodplain so flood peaks are	ch				
network	of anabranching	maximally attenuated. Flood pulses					
channel	s with vegetated	diffused and subdued. High water table					
islands.		and close connection between stream					
		flow and ground water ensures reliable	m				
		base flows and continuous	gr				
		hyporhesis, though flow in smaller	so				
		anabranches may be ephemeral.					
	1.Sinuous, single-	Floods up to bankfull discharge	Ra				
	thread. Stable and	retained in-channel reducing	co				
	laterally active.	attenuation. Larger floods still spill	m				
	Sediment sorting and	to floodplain, attenuating their	de				
	transfer.	peaks. Close connection between	bo				
		groundwater and stream flow ensures	th				
		reliable base flows and good	di				
		hyporhesis.	be				
			de				
			•				
	3s. Arrested	Concentrates a wide range of flood	Si				
	degradation.	peaks, providing no effective flood	lir				
	Confined or canyon-	attenuation and maximal flood pulse	pı				
	type channels.	effects. Groundwater recharge is	pl				
		minimal, base flow unreliable and	by				
		hyporheic zone remains damaged or	ch				
ls		destroyed.	an				
<u> </u>			-				

A. Degradation and
widening. Incising
with unstable,
retreating banks.Concentrates an extreme range of
flood peaks, negating flood
attenuation and further amplifying
flood pulse effects. Groundwater
recharge, base flow generation and
hyporheic connectivity are all
dysfunctional.

H

ch

tra

co

sc

so

ngle Thread Channels

_						· · · · · · · · · · · · · · · · · · ·	1
		SEM			osystem Benefits		
			Habitat	Biota (see Thorpe et al., 2010)	Resilience and Persistence	Water Quality	
 Anastomosing. Dynamically meta-stable network of anabranching channels with vegetated islands. 		le network of ing channels with	Multiple channels, islands and broad floodplain provide access to rich palette of diverse habitats in close proximity and refugia across a wide range of flood events. High water table, deep pools and continuous hyporhesis provide drought refugia in the multiple channels. Channel margins evolve semi-continuously to expose tree roots.	Multiple, complex, dynamic channels that are connected to an extensive floodplain and which interact with groundwater and hyporhesis support large numbers of different species. This provides for the highest possible biodiversity (species richness and trophic diversity), proportion of native species, and 1 st and 2 nd order productivity.	Physical and vegetative attributes and functions stemming from their complexity, connectivity and diversity act to attenuate floods and sediment pulses, making habitat and biota persistent and highly resistant to natural and anthropogenic disturbances including flood, drought, and wild fire.	High capacity of multi-channel network to store sediment and cycle nutrients and other suspended solids produces exceptional water clarity. Dense, diverse proximal vegetation provides abundant shade which, together with efficient hyporhesis, is highly effective in ameliorating temperatures.	
		transfer.	Palette of habitats somewhat reduced and range of flood refugia decreased though still high. Continued hyporhesis coupled with deeper scour pools in the single-thread channel provide excellent drought refugia. Reduction in length of shoreline decreases extent of exposed roots.	Single-thread channel connected to floodplain. Channel still prot range of valuable habitati margins, though reduct complexity and ba biodiversity and productivity a	- Contraction of the second se	Sediment storage and nutrient cycling capabilities slightly reduced but clarity still good in single channel/floodplain unfiguration. Temperature amelioration ntained due to effective shade and hesis in channel/floodplain system.	
		 Channelized. Resectioned land drainage, flood control, or navigation channels. Degrading. 	Construction of trapezoidal cross-section, imposition of uniform morphology and isolation from floodplain destroys most habitat and disables functionality with respect to provision of flood and drought refugia. Exposed tree roots are removed during construction. Degradation destroys benthos, removes	Disturbance rapid to all native sp condition richness 1st and markedy Disturba		of flows concentrated into nanel without floodplain sults in low water clarity and nt cycling. Poor temperature ne to lack of riparian shading thyporheic exchange.	
		Incising and abandoning its floodplain. Banks stable geotechnically.	features that provide in-channel habitat and isolates channel from floodplain habitat. Channel scour and disconnection from floodplain mean that flood and drought refugia are destroyed or dis-functional. Tree roots exposed by bank scour.	although with this naturally a anthropogen trophic densit impacts on the		ng further weakened due to bed lion destruction loss and reduced interaction. Effective e amelioration impaired by lack of poor hyporheic exchange.	, , , , , , , , , , , , , , , , , , ,
	Channels -	3s. Arrested degradation. Confined or canyon- type channels.	Loss of habitat and/or disabling of functions incurred in Stage 3 are perpetuated in the confined, incised channel that results from arrested development when a degrading channel encounters highly erosion-resistant materials.	Suitably, confine states		tions responsible for water clarity and rrient cycling remain ineffective. Temperature amelioration may recover if stable banks support riparian vegetation sufficiently tall to provide effective shade.]
	Single Thread	 Degradation and widening. Incising with unstable, retreating banks. 	Continued degradation further damage benthos, bedform and bar features preventing recover of in-char and increasing isolation free Bank instability destroad does expose some up	B bed degradation inta destroy habitat biodiversity, and 1 " and wity being sustained in proportion of native biota ever.	Degapart bink retreat exposes remaining habitat and ecosystem benefits to disturbance and negates their flood and drought resilience.	Physical attributes responsible for providing water clarity and nutrient cycling remain dysfunctional. Bank instability and rapid widening removes riparian shade, negating capability for temperature amelioration.	
	•	4-3. Renewed incision. Further head cutting within Stage 4 channel.	Continued bed su that no record connectivi further the set its to set the set of the set	off incision and rapid bank retreat rent recovery of habitat, perpetuating we levels of biodiversity, and leading to collapse of 1 st and 2 nd order productivity The proportion of native biota remains low.	Renewed incision and bank instability maintains the heightened sensitivity of residual habitat and ecosystem benefits to disturbance and prevents any recovery of flood and drought resilience.	Renewed incision, bank instability and widening reduce remaining capacity of the physical and vegetative attributes of the channel to provide habitat and ecosystem benefits with respect to water quality.	
		5. Aggrading and widening. Bed rising, banks stablising & berming.	m respect habitat d for the frage. Crean and the aggrading by ide limited refuge during floous.	Reinstatement of some benthic sediments and in-channel features is reflected in some recovery in 1 st and 2 ^{sd} order productivity. However, at this stage biodiversity and the proportion of native biota have yet to respond.	Return of benthic sediments and in-channel features allow channel to absorb at least small disturbances without destroying habitat. Enlarged channel dimensions and conveyance tend to increase resilience to floods though not droughts.	Re-creation of bedforms, bars and berms together with return of aquatic, emergent and riparian vegetation re-activate sediment storage and nutrient cycling functions, though water clarity and capacity for temperature amelioration remain limited.	
		6. Quasi- equilibrium. Regime channel and proto-floodplain re- established.	Some improvement in palette of accessible habitat, matched by provision of limited flood refuge and exposed roots from recovery of some in-channel features and vegetation. Reconnection of channel to groundwater and hyporheic zones result in some drought refugia.	Quasi-equilibrium, coupled with recovery of floodplain and hypotheic connectivity supports limited improvements in species richness and trophic diversity and allows some native biota to return. 1 st and 2 nd order productivity continues to increase as a result.	Quasi-equilibrium channel increasingly able to absorb moderate disturbances to flow and sediment regimes without loss of habitat and ecosystem benefits. In-channel features, vegetation, and floodplain connectivity and hyporhesis afford moderate flood and drought resilience.	Increases in the extent of the inset floodplain and riparian zones, vegetation re- growth and re-establishment of hyporheic connectivity provide moderate functionality for clarity and temperature amelioration, though nutrient cycling remains weak.	
		7. Laterally active. Regime channel develops sinuous course.	Further improvement in range, quality and accessibility of habitat, coupled with improved functionality in terms of flood and drought refugia. Habitat benefits similar to Stage 1 channel, though habitat palette somewhat smaller.	species colonise and use the sinuous channel and developing floodplain. Productivity remains moderate.	Disturbances to channel increasingly ameliorated by flow and sediment storage on developing floodplain, though sensitivity remains higher than in Stage 1 due to its smaller extent. Flood and drought resilience similarly limited.	Plant succession and maturing floodplain and riparian zones increase efficiency of nutrient cycling and provision of shade. Water clarity remains moderate but temperature amelioration further improved.	
		mosing. Meta-stable ing network.	Multi-channel complexity produces further improvement in habitat palette. Longer banklines provide more extensive areas with exposed roots, but loss of deepest pools reduces performance of flood refugia during the most extreme events.	Renewed habitat diversity, richness and connectivity allow native biota to re-occupy the area, with levels of biodiversity and productivity recovering to pre-disturbance levels, albeit on the somewhat smaller palette provided in Stage 8.	Physical and vegetative attributes and functions of Stage 8 channel make habitat and biota persistent and highly resistant to natural and anthropogenic disturbances, though levels cannot match those of Stage 0 due to restricted size of inset floodplain.	Multi-channel network with connected floodplain, hyporheic exchange and mature plant communities supports excellent water clarity, temperature amelioration, and optimal nutrient cycling.	

Table III Habitat & Ecosystem Benefits

SEM		Habitat and Eco	system Benefits	
SEM	Habitat	Biota (see Thorpe et al., 2010)	Resilience and Persistence	Water Quality
0. Anastomosing. Dynamically meta-stable network of anabranching channels with vegetated islands.	Multiple channels, islands and broad floodplain provide access to rich palette of diverse habitats in close proximity and refugia across the second second second second High second sec	are connected to an extensive floodplain and which interact with groundwater and hyporhesis support large numbers of different species. This provides for the highest possible biodiversity (species richness and	connectivity and diversity act to attenuate	High capacity of multi-channel network to store sediment and cycle nutrients and other suspended solids produces exceptional water clarity. Dense, diverse proximal vegetation provides abundant shade which, together wit efficient hyporhesis, is highly effective in ameliorating temperatures.
1.Sinuous, sir thread. Stabl laterally actii Sediment so transfer.		e-thread channel connected to its blain. Channel still provides a good of valuable habitat primarily at its though reductions in morphological sity and bankline length impact	with floodplain, groundwater and hyporheic zones maintains high resilience to disturbance. Flood and drought resilience	Sediment storage and nutrient cycling capabilities slightly reduced but clarity still good in single channel/floodplain configuration. Temperature amelioration maintained due to effective shade and hyporhesis in channel/floodplain system.
3. Degrading Incising and abandoning its floodplain. Banks stable geotechnically.	filo, refugia and onal. roots exposed by bank scour.	ugh some species have adapted to cope	0	Functions responsible for water clarity and nutrient cycling further weakened due to bed scour, vegetation destruction loss and reduce groundwater interaction. Effective temperature amelioration impaired by lack of shade and poor hyporheic exchange.
3s. Arrested degradation. Confined or canyon- type channels.	Loss of habitat and/or disabling of functions incurred in Stage 3 are perpetuated in the confined, incised channel that results from arrested development when a degrading channel encounters highly erosion-resistant materials	stable, productive	Erosion-resistant bed and bank materials stabilize the boundaries of a confined, incised channel this marginally reduces habitat and ecosystem sensitivity to disturbance and provides limited flood and drought resilience.	Functions responsible for water clarity and nutrient cycling remain ineffective. Temperature amelioration may recover if stable banks support riparian vegetation sufficiently tall to provide effective shade.

SEM						
SEM	Habitat					
0. Anastomosing. Dynamically meta-stable network of anabranching channels with vegetated islands.	Multiple channels, islands and broad floodplain provide access to rich palette of diverse habitats in close proximity and refugia across a wide range of flood events. High water table, deep pools and continuous hyporhesis provide drought refugia in the multiple channels. Channel margins evolve semi-continuously to expose tree roots.	Mi are wh hyj spe po tro spe				
1.Sinuous, single- thread. Stable and laterally active. Sediment sorting and transfer.	Palette of habitats somewhat reduced and range of flood refugia decreased though still high. Continued hyporhesis coupled with deeper scour pools in the single-thread channel provide excellent drought refugia. Reduction in length of shoreline decreases extent of exposed roots.	Sin flo ran ma coi bio pro				

	construction.	ma
3. Degrading.	Degradation destroys benthos, removes	Dis
Incising and	features that provide in-channel habitat and	alt]
abandoning its	isolates channel from floodplain habitat.	wit
floodplain. Banks	Channel scour and disconnection from	nat
stable geotechnically.	floodplain mean that flood and drought	ant
	refugia are destroyed or dis-functional. Tree	tro
	roots exposed by bank scour.	imj

Attributes and Benefits, scoring scheme:

- Hydrogeomorphic attributes (26)
 - Hydraulic complexity
 - Physical channel dimensions, #
 - Hydrologic regime, floodplain
 - Channel and floodplain features
 - Substrate sorting/patchiness
 - Vegetation sediment interaction

Ordinal Score:

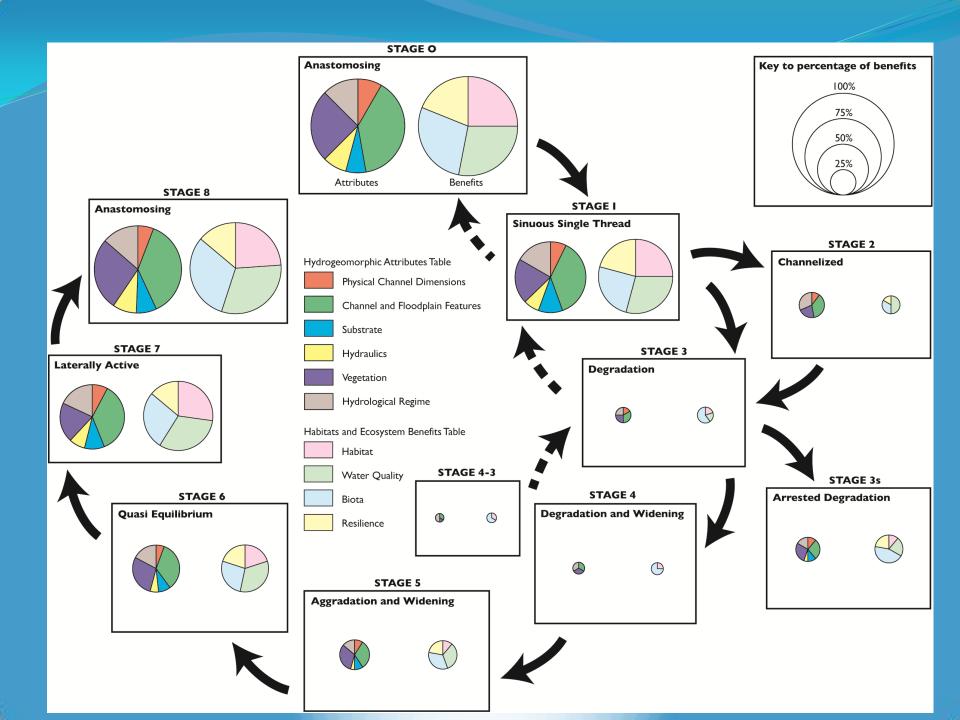

o = absent

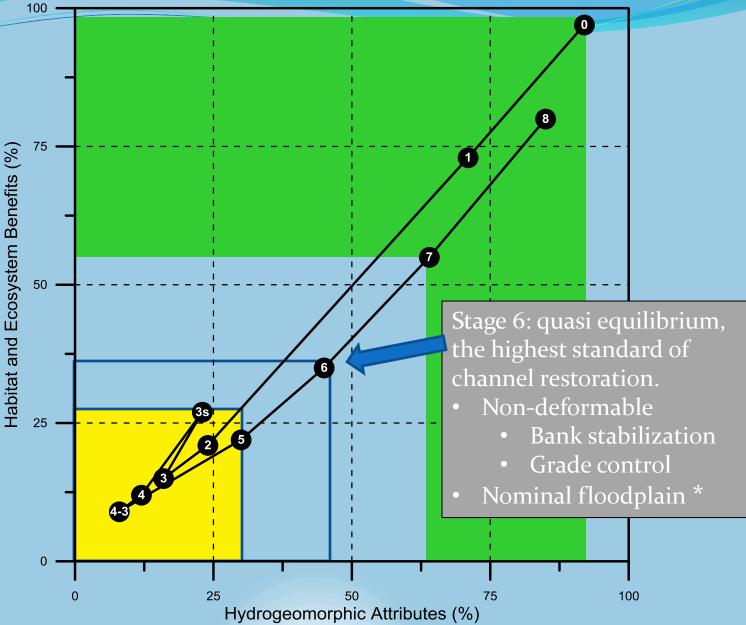
- 1 = scarce/partly functional
- 2 = present and functional
- 3 = abundant/fully functional
- Habitat and Ecosystem Benefit attributes (11)
 - Refugia from extremes flood/drought
 - Water quality clarity/temperature/nutrient cycling
 - Biota diversity/natives/1º & 2º productivity
 - Resilience to disturbance

Hydrogeomorphic	Attribu	tes Tab	le								
Stage	0	1	2	3	3s	4	4-3	5	6	7	8
Physical Channel	Dimens	ions									
Wetted Area Relative to	3	2	1	1	1	0	0	1	1	2	2
Elow	5	2		'	1	0	0	'	'	2	2
Shoreline Length and	3	2	1	1	1	0	0	1	1	2	2
Complexity	dolain I	esture	2								
Bedforms and bars	2	3	1	0	0	1	0	2	3	3	2
Islands	3	1	0	0	0	0	0	0	0	1	3
Local						-					
Confluence/Diffluences	3	1	0	0	0	0	0	0	0	1	3
Stable banks	3	2	2	2	2	0	0	1	2	2	3
River cliffs	2	2	0	1	2	2	2	2	1	2	2
Riparian Margins	3	2	1	1	1	0	0	1	2	2	3
Floodplain Extent and	3	3	1	0	0	0	0	1	2	2	2
Connectivity			-	-	-	-	_				
Side channels	3	2	0	0	0	0	0	0	1	2	2
sediment storage	3	2	1	0	0	0	0	0	1	2	3
Connected Wetlands	3	2	1	0	0	0	0	0	0	1	2
Substrate		-		-					r		
Substrate Sorting	2	3	0	0	1	0	0	1	1	2	2
Substrate Patchiness	3	3	0	0	1	0	0	1	2	3	3
Hydraulics											
Hydraulic Diversity	3	2	0	0	1	0	0	1	1	2	3
Marginal Deadwater	3	2	0	0	0	0	0	0	1	2	3
Vegetation											
Aquatic plants	3	2	1	0	0	0	0	1	2	2	3
Emergent Plants	3	1	1	1	1	1	0	2	2	1	3
Riparian plants	3	2	0	0	1	0	0	1	1	2	3
Floodplain plants	3	3	2	0	0	0	0	0	1	2	3
Woody debris	3	1	0	1	1	2	1	2	2	1	3
Leaf litter	3	2	0	1	2	0	0	1	2	2	3
Hydrological Regineration Regine	ne	1		I				1			
Flood pulse	1	1	2	3	3	3	3	2	2	1	1
Flood attenuation	3	2	1	0	0	0	0	0	1	2	3
Base flow	2	3	1	0	0	0	0	0	1	3	2
Hyporheic connectivity	3	3	2	0	0	0	0	1	2	3	3
				1	sults						
possible		78	78	78	78	78	78	78	78	78	78
sum		54	19	12	18	9	6	22	35	50	67
ratio	92%	69%	24%	15%	23%	12%	8%	28%	45%	64%	86%

Table IV

Shoreline Length and Complexity





Habitat and Ecosystem Benefits Table

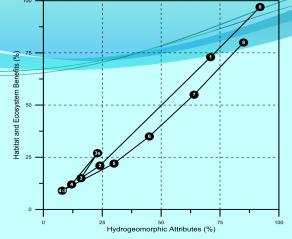
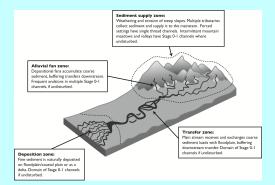

Stage	0	1	2	3	3s	4	4-3	5	6	7	8
Habitat											
Flood Refugia	3	2	0	0	0	0	1	1	1	2	2
Drought Refugia	2	3	0	0	0	0	0	0	1	3	2
Exposed tree roots	3	1	0	1	1	1	0	0	1	1	3
Water Quality											
Clarity	3	2	1	0	0	0	0	1	2	2	3
Temperature amelioration (shade and hyporheic flow)	3	3	1	1	2	0	0	1	2	3	3
nutrient cycling	3	2	1	0	0	0	0	1	1	2	3
Biota											
Biodiversity (species richness and trophic diversity)	3	2	0	1	1	1	1	1	1	2	3
Proportion of Native Biota	3	2	1	1	1	1	1	1	1	2	3
1st and 2nd Order Productivity	3	2	1	1	2	1	0	1	2	2	3
Resilience											
Disturbance	3	3	1	0	1	0	0	1	1	2	2
Flood and Drought	3	2	0	0	1	0	0	1	2	1	2
	Results										
possible	33	33	33	33	33	33	33	33	33	33	33
sum	32	24	6	5	9	4	3	9	15	22	29
ratio	97%	73%	18%	15%	27%	12%	9%	27%	45%	67%	88%

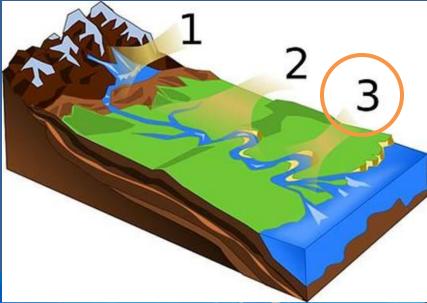
Table V

Conclusions:

- Level of habitat and benefits irreplaceable by channel enhancement, only floodplain processes provide the high levels of benefits.
- Low benefit streams can evolve, given space and time, or encouragement.
- Seasonal and perennial wetland floodplain complexes were historically common features in alluvial valleys.
 - Stage O streams are resilient to climate extremes.

Observations:


- Most of today's alluvial streams are the result of past management for flood control and land drainage
 - Focused on making sediment transfer zones and quick drainage- everywhere
- History of managing rivers for habitat is very short, and biased by 2 centuries of river management for drainage, minimization and stability.
- Restoration has focused on enhancement of low benefit Stages, not fundamentally changing their physical or ecological attributes.



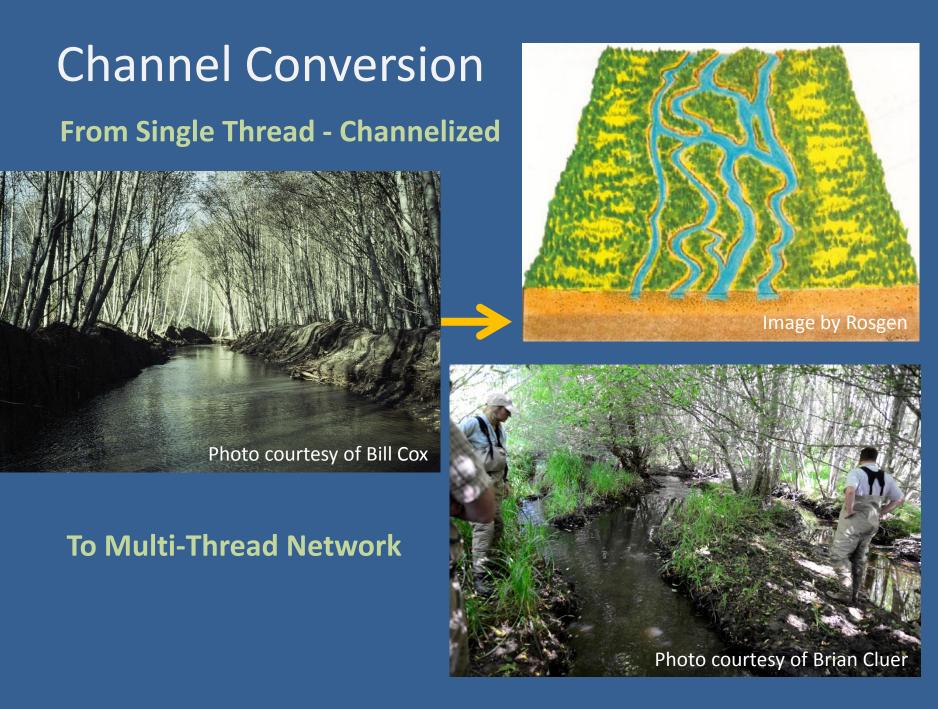
Suggestions:

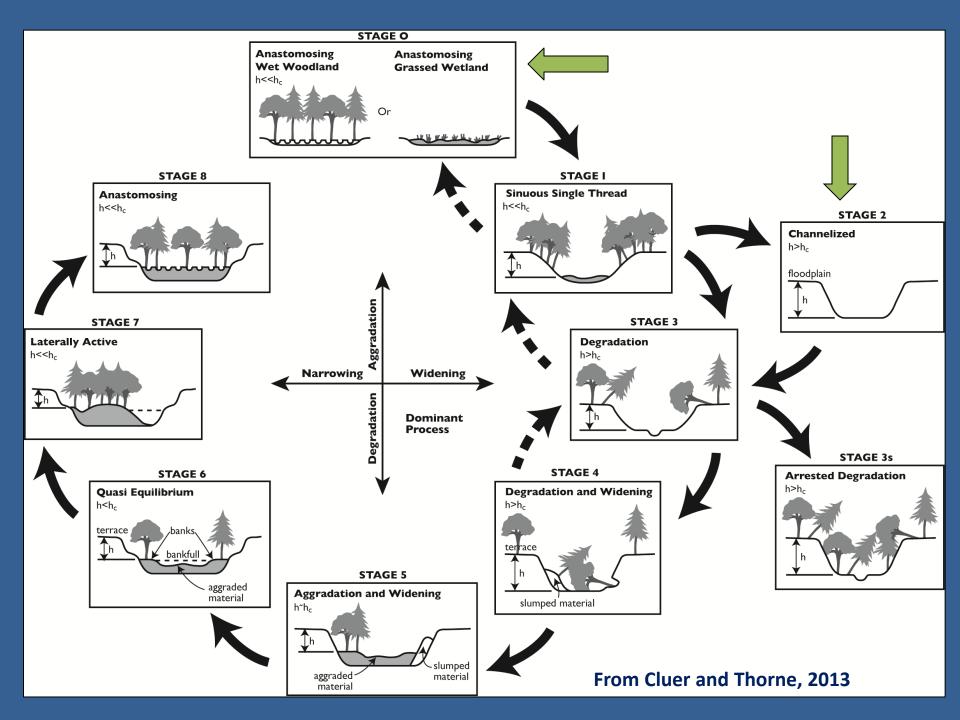
- Manage for process <u>discontinuities;</u>
 - deposition and sorting,
 - sediment as a resource,
 - flow diffusion,
 - groundwater recharge, hyporhesis
- Reevaluate 'stability'
 - A stable ecosystem is unrelated to a stable channel.

River-Estuary Ecotone

1st Example: Willow Creek, Sonoma County

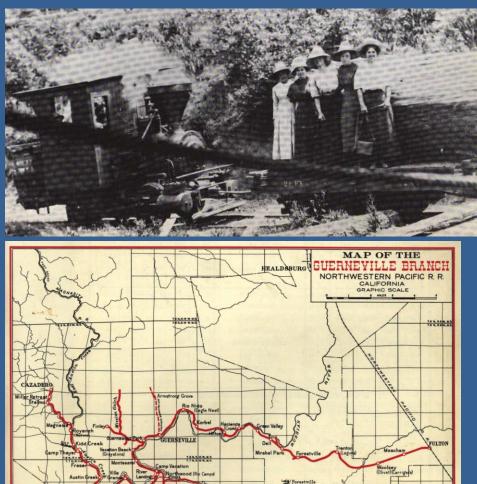
Russian River

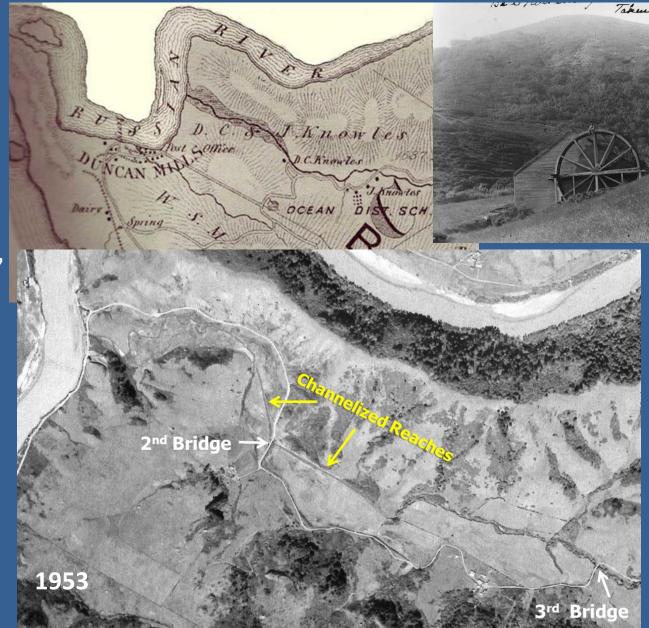

Jenner, CA, USA


San Fran 80 miles

Google

Project proponents: Stewards of the Coast and Redwoods, State Parks


Data CSUMB SFML, CA OPC


History and Landuse - Upper Watershed

- 1848 First recorded logging permit in California
- 1860 to early 1900s Extensive logging using narrow gauge railroad and steam donkeys.
- 1953 to early 1970s second growth and remaining old-growth clear cut.

History and Landuse - Lower Watershed

- Late 1800s valley cleared and channel routed to north side.
- Thru mid 1900s valley farmed, mill, community
- 1940s channel straightened (2500')
- 1960s to 1980s channel regularly dredged.

Last Channel Dredging in 1983

Response to Change in Management

Russian River

Extent of Gravel Deposition

🚫 In 1980s

1987 Air Photo

🔚 In 1990s

in early 2000s

1995 and '96 Floods

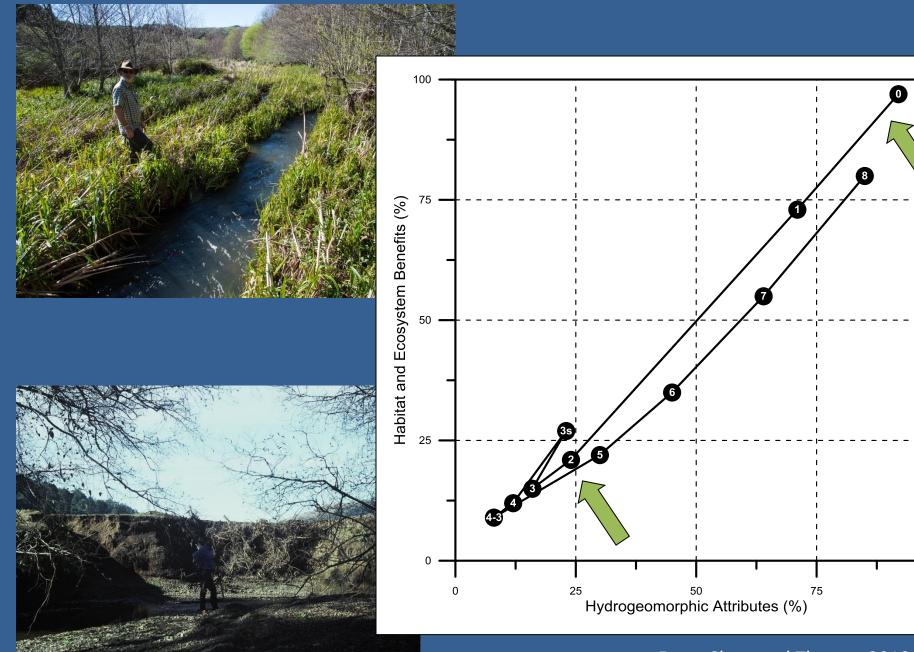
> 1983 and 1986 Floods

Location of Complete Channel Aggradation

1997

2004

201



Filling of the Stage 2 channel progresses upstream.

Is followed by channel network development.

From Cluer and Thorne, 2013

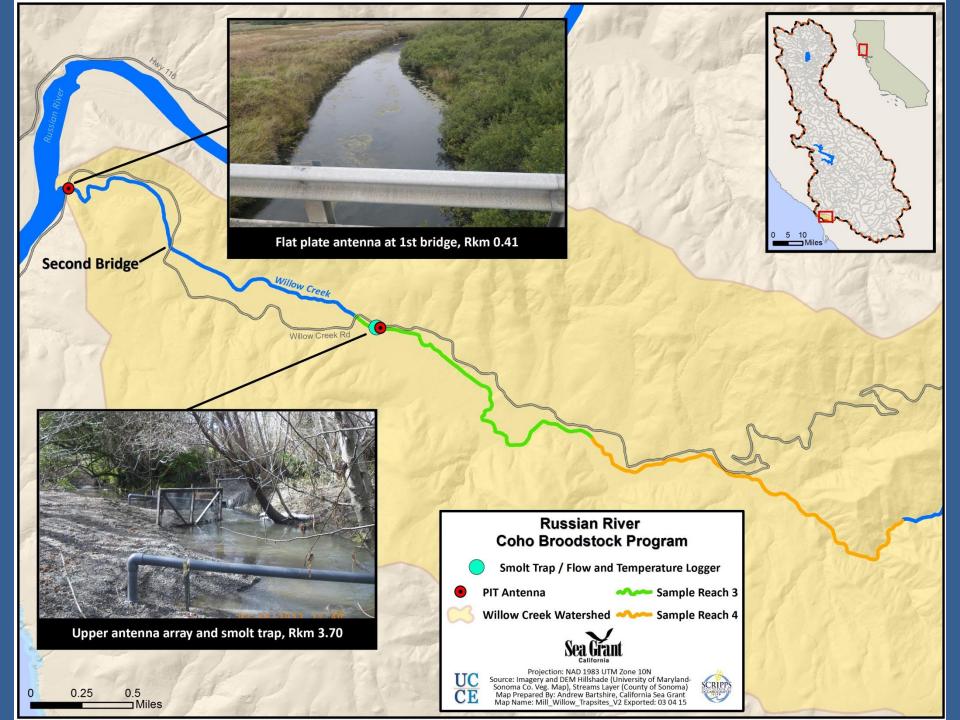
100

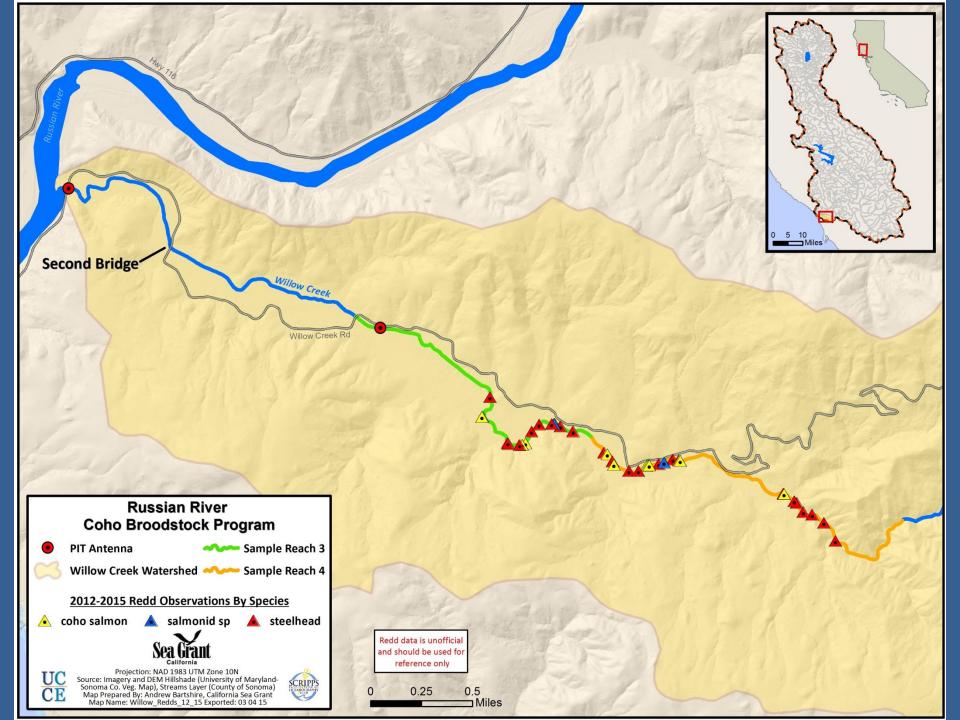
Problem: Creek is no longer flowing under bridge. Salmon not getting into the watershed.

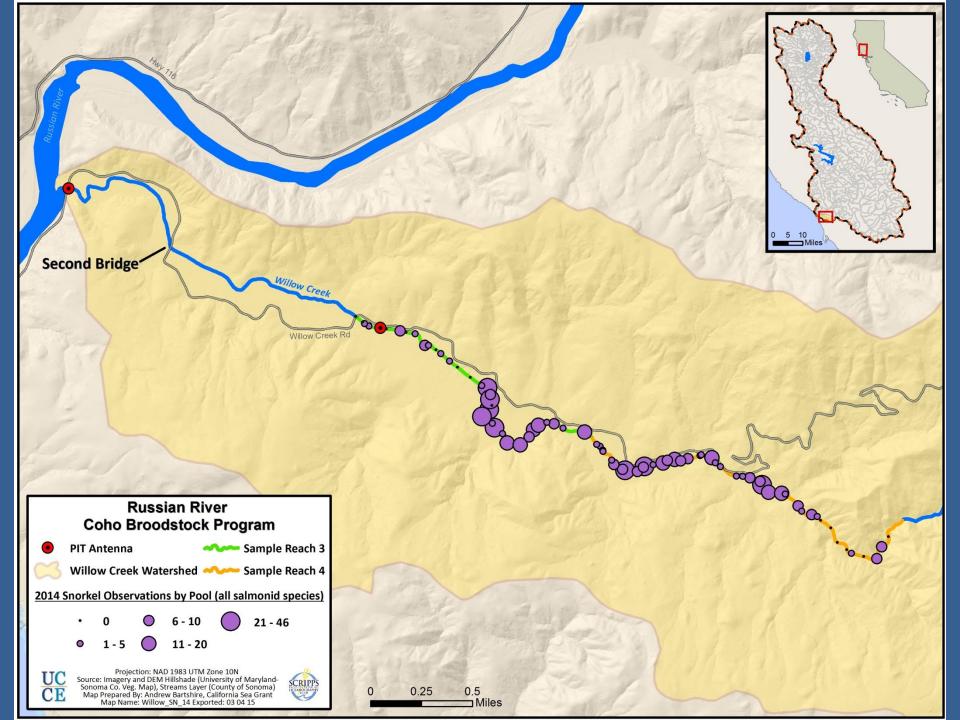
Bermed road across floodplain restricted adult and juvenile fish passage.

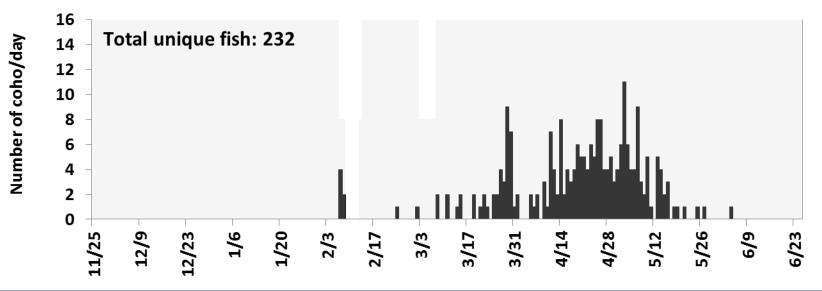
Flooded with every large storm.

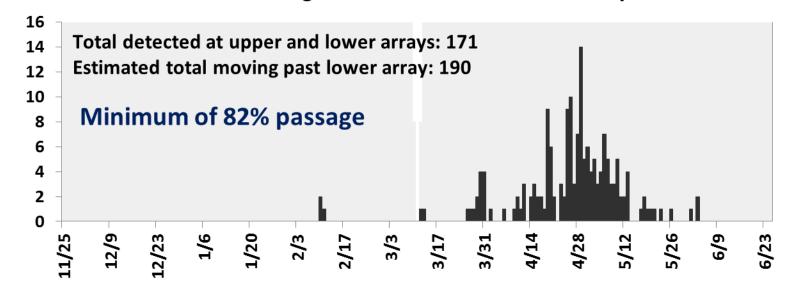
Replaced culverts with bridge in 2011



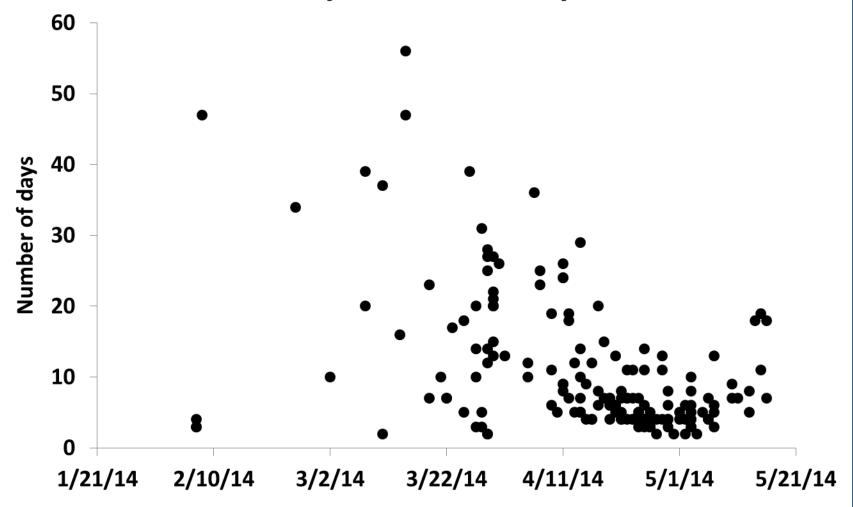

Lingering Questions and Concerns...


- Are there connected channels through the wetlands?
- Will adult fish be able to find their way up through?
- Will juveniles get lost on the way out?
- Will juveniles choose to rear in the wetlands?





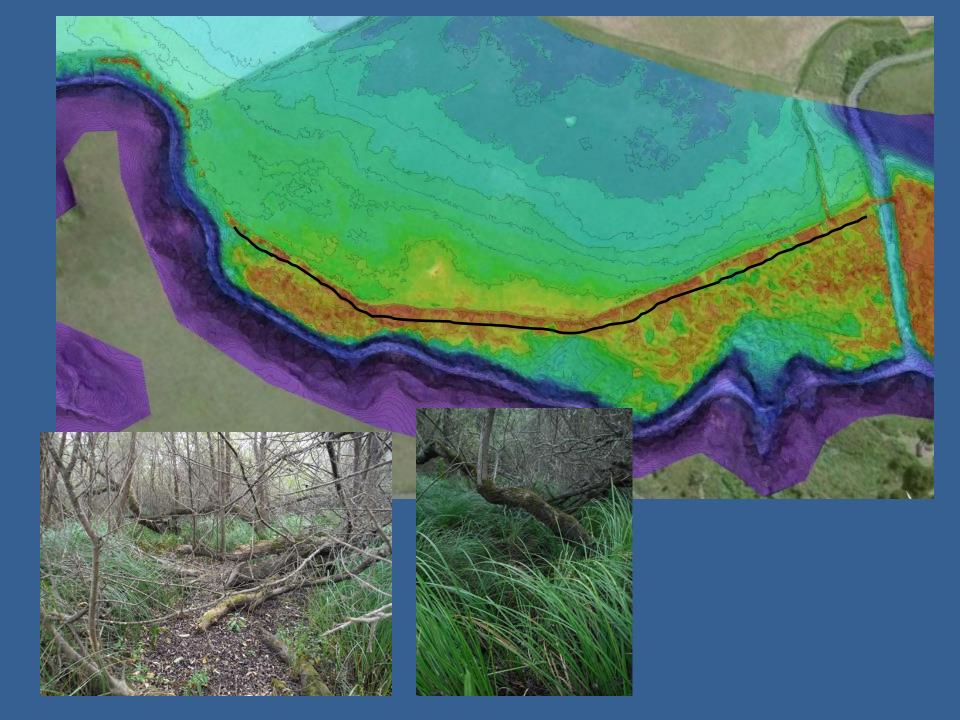
2013-2014 PIT Tag Detections at Upper Willow Array



2013-2014 PIT Tag Detections at Lower Willow Array

Number of coho/day

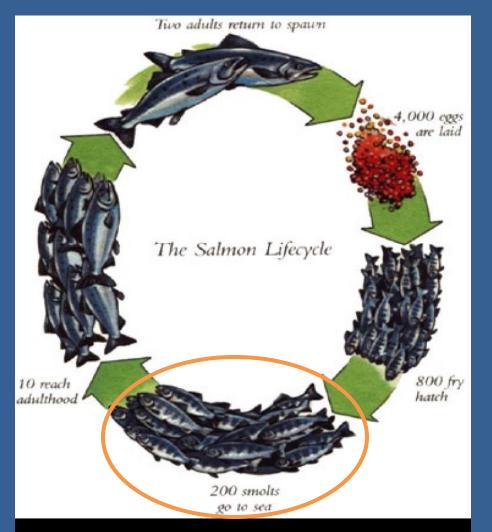
Number of days between detections on upper array and lower array


Answers after 3 years of Monitoring Willow Creek

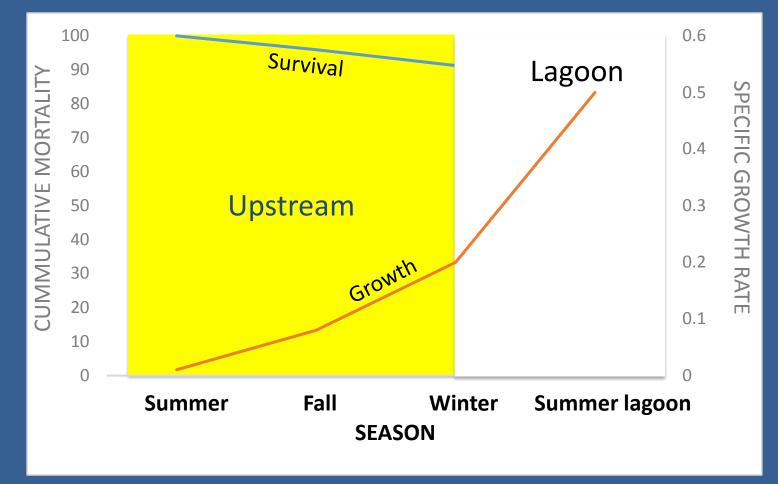
- Are there connected channels through the wetlands? Yes
- Will adult fish be able to find their way up? No problem
- Will juveniles get lost on the way out? A few
- Will juveniles choose to rear in the wetlands? Likely in wet years

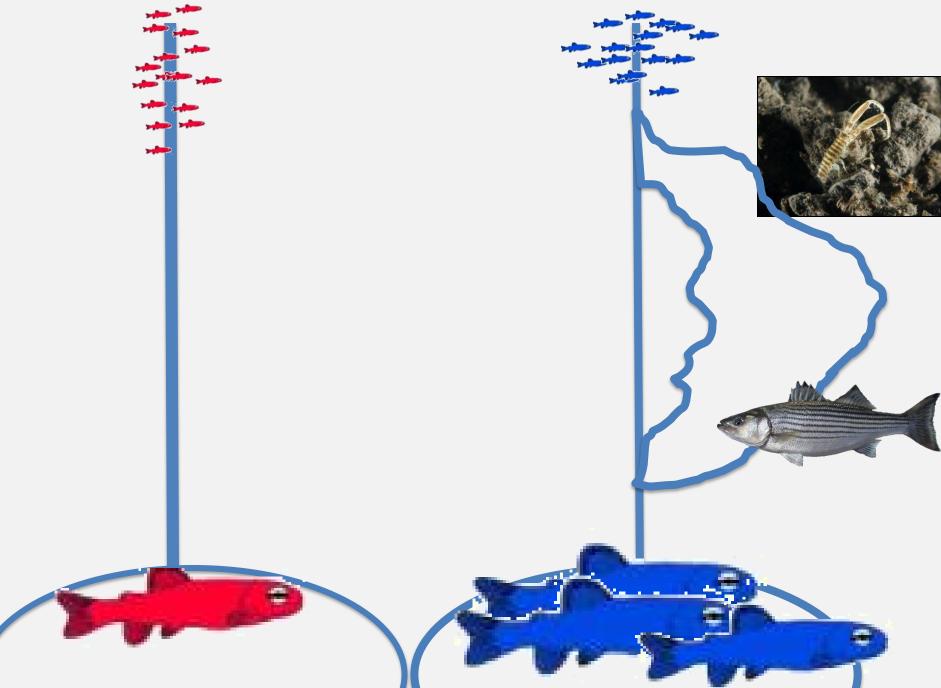
2nd Example: Lower Garcia River, Mendocino County





3rd Example- Ten Mile River, Mendocino County


Salmonid Success is a growth and numbers game



Survival and Growth by Habitat Steelhead – Scott Creek

Courtesy of Sean Hayes, NMFS

Courtesy of Sean Hayes, NMFS

Juvenile Rearing	Chinook	
	Coho age 0 age 1	
	Steelhead age 0 age 1, age 2	
Smolt Out- migration	Chinook	
	Coho	
	Steelhead	

