# Water Drafting Workshop











#### Overview

- Effects of Drafting
- Regulatory Considerations
- Common Water Drafting/Diversion Types
- Hydrology and Geomorphology Considerations
- Methods of Streamflow Measurement
- Minimizing Water Use and Alternatives to Drafting
- Protection Measures/BMPs

#### Introduction

- Goals
- Caveats
- Purpose/Need for Water Drafting
- What is Streamflow?



Pond adjacent to a haul road in Santa Cruz County

# Workshop Goals

For agencies, RPFs, and LTOs to understand:

- Regulatory requirements for water drafting in the Forest Practice Rules and Fish and Game Code
- Common water drafting/diversion types
- Techniques and standard operating procedures to measure stream flow
- Water drafting best management practices (BMPs) to reduce potential impacts on aquatic species

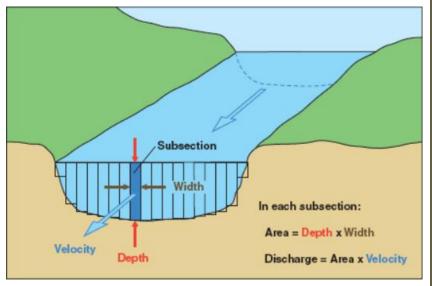
### Workshop Caveats

- This workshop provides a basic overview
- The recommendations that follow should:
  - Be applied on a site-specific basis
  - Not be treated as CDFW/CAL FIRE policy, instructions, or requirements



# Purpose/Need for Water Drafting

- Dust abatement
- Fire suppression
- Post-wildfire road repair
- Construction/ reconstruction






©Roger Petersen (CalFire)

# What is Stream Flow or Discharge?

- The volume of water that moves over a designated point over a fixed period of time
- Area x Velocity = Flow (Q)



©USGS

- Expressed as:
  - cubic feet per second (cfs)
  - gallons per minute (gpm)

# Effects of Drafting on Aquatic Organisms

Fish and AmphibiansCumulative Effects





### Effects on Fish and Amphibians

- Immediate:
  - Stranding
  - Impingement
  - Predation
  - Egg desiccation



#### Long-term

- Reduced food base (stream invertebrates)
- Displacement
- Water Quality



Flow Reduction Impacts on Stream Invertebrates (Fish and Amphibian Food Base)

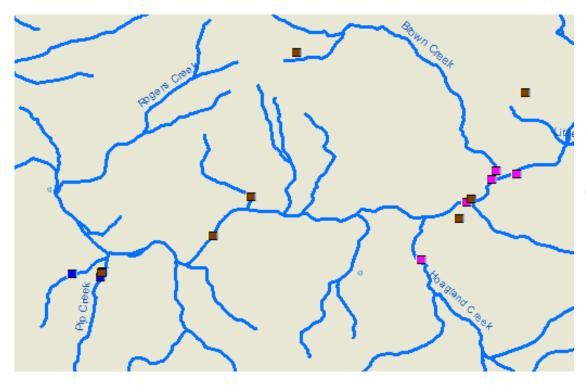
- Sudden increase/ decrease in flows
  - Increased insect drift
  - Reduced food base
- Lack of habitat
  - Loss of rearing space
  - Increased competition
  - Changes composition, diversity, and richness

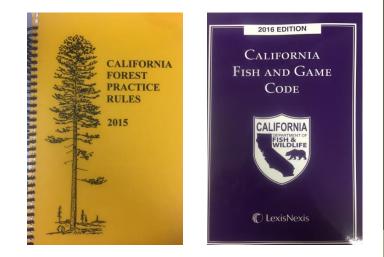




#### **Cumulative Effects**

Multiple water users on a single stream or within a watershed





Image from eWRIMS web mapping application, showing the registered water users along an Eel River tributary

#### **Regulatory Considerations**

- CEQA and Regulations
- Forest Practice Rules
- Protected Species: CESA and ESA
- Fish and Game Code § 1600 et seq.
- Reporting

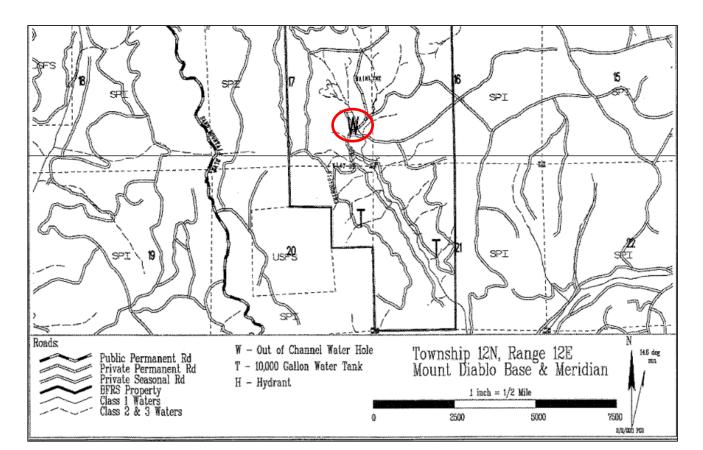
# **CEQA** and Regulations

- CEQA requires all project impacts be disclosed and an analysis of how to reduce impacts to less than significant
- The California Forest Practice Act and Rules were developed to ensure timber harvest activities comply with CEQA
- Other laws also regulate activities
  - Fish and Game Code 1600 et seq.
  - California Endangered Species Act
  - Endangered Species Act
  - California Water Code



### Forest Practice Rules Maintenance and Monitoring of Logging Roads and Landings

14 CCR § 923.7 [943.7, 963.7] (C)


During timber operations, road running surfaces in the logging area shall be treated as necessary to prevent excessive loss of road surface materials



#### Forest Practice Rules Contents of Plan

14 CCR § 1034 (x)(4)(C)

Maps shall show logging roads that provide access to rock pits and water drafting sites, and the location of water drafting sites.



### **Forest Practice Rules**

#### Anadromous Salmonid Protection (ASP) Watersheds



14 CCR § 923.7 [943.7, 963.7](I)(2)

- (1) Comply with Fish and Game Code Section 1600, et seq.
- (2) Describe the water drafting site conditions and proposed water drafting activity in the plan
  - A. Map
  - B. Watercourse Classification
  - C. Drafting Parameters
  - D. Drainage area above diversion
  - E. Estimated streamflow, pumping rate and drafting duration
  - F. Discussion of potential effects on aquatic habitat downstream
  - G. Proposed alternatives
  - H. Methods used to measure streamflow

#### **Forest Practice Rules**



ASP Watersheds

14 CCR § 923.7 [943.7, 963.7](I)(3)(A)-(G)

- A. Intake screen and velocity limits to avoid fish impingement
- B. Approaches rocked
- C. Barriers to sediment transport
- D. Drip pans and absorbent blankets in WLPZ
- E. On Class I streams
  - (1) Bypass flows at least 2 cfs
  - (2) Diversion rate less than 10 percent of surface flow
  - (3) Pool volume reduction less than 10 percent
- F. Drafting logs
- G. RPF and drafting operator field meeting

#### Protected Species California Endangered Species Act (CESA) Endangered Species Act (ESA)

#### CESA

- Take of state-listed candidate, threatened or endangered species
- Fish & Game Code defines "take" as: Hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill



#### ESA

- Take of federally listed threatened or endangered species
- "Take" defined as: Harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct
- Includes protection of species' habitat

List of California federal and statelisted animals can be found: <u>http://nrm.dfg.ca.gov/FileHandler.a</u> <u>shx?DocumentID=109406&inline=1</u>

# Fish and Game Code (FGC)§ 1600

The Legislature finds and declares that the **protection** and conservation of the fish & wildlife resources of this state are of utmost public interest



Eel River, Fall 2013

#### Fish and Game Code

Lake and Streambed Alteration § 1600 et seq.

An entity may not *substantially* divert or obstruct the natural flow of, or *substantially* change or use any material from the bed, channel, or bank of, any river, stream, or lake...unless CDFW is notified.



Beaver Creek, Tuolumne County, Nov 2015

# Fish and Game Code § 45 Definition of "Fish"

"Fish" means wild fish, mollusks, crustaceans, invertebrates, or amphibians, including any part, spawn, ova, thereof

















# Other Applicable Fish and Game Code Sections

- § 5650 Water Pollution; Prohibited Materials
- § 5901 Prevent or Impede Fish from Passing in Streams; Unlawful
- § 5937 Sufficient Water for Fish Existing Below Dams
- § 5948 Log Jam, Debris, or Artificial Obstruction in Streams; Unlawful

### Reporting

- CDFW may recommend monthly drafting information to ensure:
  - Compliance with Lake and Streambed Alteration Agreement
  - Flow measurements/drafting rates appear reasonable
- In ASP watersheds the drafting operator shall keep a log that records, for each time water is drafted:
  - The date
  - Total pumping time
  - Pump rate
  - Starting time
  - Ending time
  - Volume diverted

# Common Water Drafting/Diversion Types

- Direct Drafting
  - In-channel
    - Instream with or without impoundments
  - Off-channel
    - Isolated ponds
    - Excavated basin



- Diversion and Storage
  - Tanks
  - Wells



### Direct Drafting In-Channel

- Streams and rivers where adequate flow exists in which aquatic resources will not be adversely affected
- Usually greater than 2 cfs



# **Direct Drafting**

#### Example from LSA Agreement in ASP Watershed

Table 1. Class I Watercourse Requirements: Maximum Allowable Water Drafting Rates

| Source Flow<br>(streamflow)<br>in cfs (gpm) | Range of allowable<br>water drafting rates<br>(gpm) | Estimated time to<br>draft 3,200<br>gallons | REQUIREMENTS                                                                                                                                                              |
|---------------------------------------------|-----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| > 7.8 (3500)                                | 350                                                 | 9 minutes                                   | Maximum removal rate shall be < 10% of source flow (streamflow)                                                                                                           |
| > 6 - 7.8<br>(2693 - 3500)                  | 270 - 350                                           | 9 – 12 minutes                              | Maximum removal rate shall be < 10% of source flow (streamflow)                                                                                                           |
| > 2.25 - 6<br>(1009 - 2693)                 | 101 – 270,<br>depending on flow                     | 12 – 32 minutes                             | Drafting Logs Required; Maximum removal rate<br>shall be < 10% of source flow (streamflow);<br>Trucks likely require smaller pumps; pumping<br>rate verification required |
| >2 - 2.25<br>(898 - 1010)                   | 90 – 101,<br>depending on flow                      | 32 – 48 minutes                             | Drafting Logs Required; Maximum removal rate<br>shall be < 10% of source flow (streamflow);<br>Trucks will require smaller pumps; pumping rate<br>verification required   |
| <u>≤</u> 2 (898)                            | NO DRAFTING                                         |                                             | WATER DRAFTING PROHIBITED                                                                                                                                                 |

# Instream Impoundments (or ponds with perennial outflow)



- Locations selected based on streamflow
- Impoundments allow fish passage
- Diversion / bypass flows should not exceed a rate that cause substantial adverse impacts to aquatic resources



Class II pond with Class II outflow

Pond drafting should not reduce downstream flows to levels which will cause a substantial adverse impact to aquatic species.

Small class II stream leaving pond

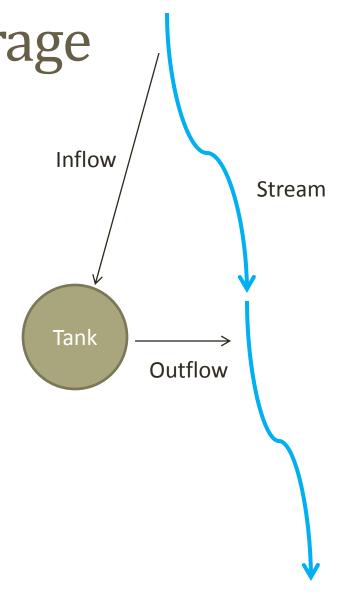
# Off- Channel Isolated Ponds (No Outflow)

- Staff gauge establishes bench marks
- Avoid drying of nearshore vegetated zone and associated aquatic species





### **Off-Channel Excavated Basins**


- Excavated basins near active stream channel
- Unconfined alluvial channels only
- Avoids instream fish impingement
- Slow infiltration reduces instream flow diversion
- Evaluate infiltration/diversion rate effects on instream flow and adjust diversion rates accordingly
- Recontouring off channel water drafting holes





### **Diversion and Storage**

- Gravity system or solar powered pumps feed 3 tanks via 2 to 4-inch PVC pipe.
- Mainly used on small streams with low flow (< 2 cfs), where direct drafting is not feasible
- Can take a long time to fill (half an hour to two days to refill tank, depending on stream flow)
- Considerations



#### Class II water drafting intake screen (Mesh)



#### Class II water drafting intake



#### PVC pipe leading from intake to tank



# Class II Water Drafting Tank

#### Gravity fed inflow

Float valves prevent overtopping

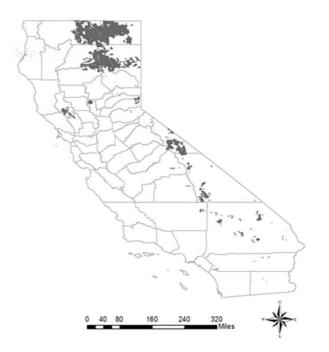
#### Outflow to water tender

Class II Water Drafting Tank: No float valve: flow through system

### Wells

# Is groundwater within CDFW jurisdiction?

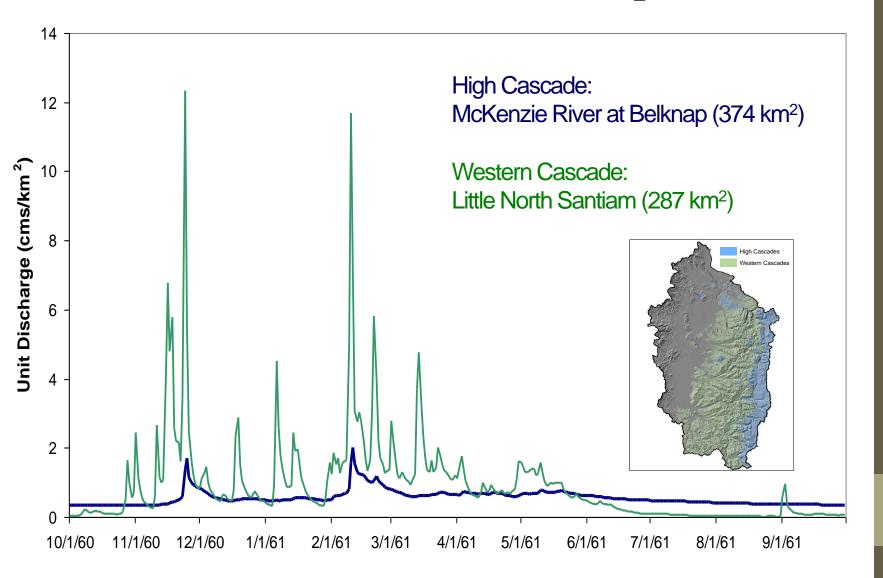
 Depends on whether pumped water will affect nearby streams




### Hydrology and Geomorphology Considerations

- Planning for and identifying the best sites and drafting methods
  - Water availability
  - Site constraints

### Hydrological Variation


Spring-fed (groundwater dominated) versus precipitation-fed (runoff dominated)







#### **Groundwater versus Precipitation**



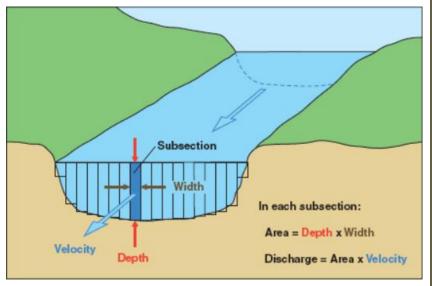
Ingebritsen 1992

# Geomorphology Considerations Channel Configuration





Confined/ steep slope /rough channel Broad/flat/alluvial reach gentle slope/ smooth channel


# Methods of Streamflow Measurement

- What is Streamflow?
- Determination of Estimated Flow Prior to Use
- Stream Flow Measurement Methods:
  - Flow Meter
  - Float
  - Bucket
  - Weir
  - Riffle Crest Depth
  - Wetted Perimeter
  - Pressure Transducers
- Field Material Cost



# What is Stream Flow or Discharge?

- The volume of water that moves over a designated point over a fixed period of time
- Area x Velocity = Flow (Q)



©USGS

- Expressed as:
  - cubic feet per second (cfs)
  - gallons per minute (gpm)

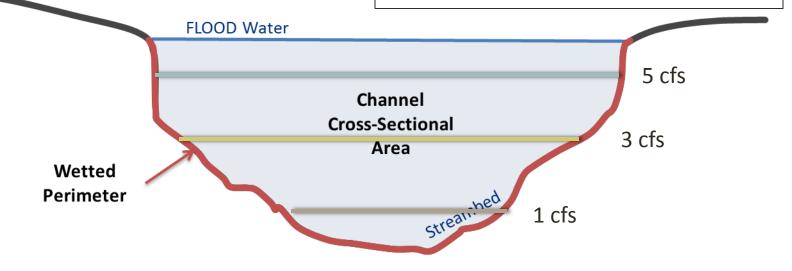
#### Determination of Estimated Flow Prior to Use

- Field level evaluation
- Collect wetted perimeter and cross sectional area measurement

Manning's Equation

$$v = \left(\frac{1.49}{n}\right) \left(\frac{A}{WP}\right)^{2/3} S^{1/2}$$

Where:


v = average flow velocity (m/s)

*n* = Manning's roughness coefficient

S= channel slope (e.g. slope of energy grade line) (m/m)


A = wetted cross-section area (m<sup>2</sup>)

WP = wetted hydraulic perimeter (m)

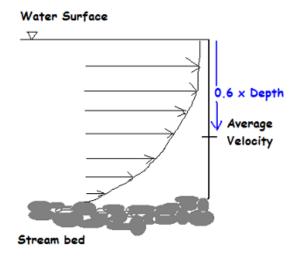


### Flow Transference Method

- Used for an <u>ungaged basin when discharge data</u> from a downstream station or nearby gaged (hydrologically similar) site is available.
- Adjusts summer base flow discharge from the gaged basin for the difference in drainage area between the ungaged basin and the gaged basin by using a simple equation.



Stream Gauging Site with 20 years of Record: Drainage Area = 100 sq. miles


#### Flow Transference Method


where:

- Q<sub>baseflowu</sub> = base flow discharge at ungaged site
- Q<sub>baseflowg</sub> = base flow discharge at gaged site
- A<sub>u</sub> = drainage area of ungaged site
- A<sub>g</sub> = drainage area of gaged site
- b = exponent for drainage area from the appropriate USGS Regional Regression Equation (= 0.77 for 100-yr equation for Sierra Region)

### Flow Meter Method

- Velocity x Cross Sectional Area
- Accuracy (+/- 10% error)
- Depth/velocity measurements
  - 0.6 depth (average of 0.2 and 0.8 depth)





### Marsh McBirney





For use on stream channels with depths greater than 3 inches (~ 8 centimeters) and velocities greater than 0.01 feet per second.

# Pygmy Meter







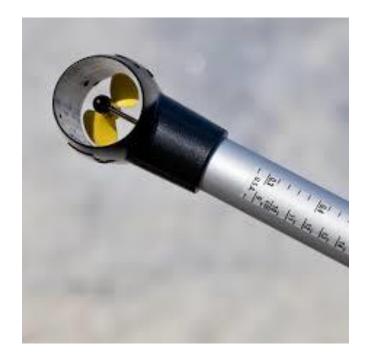
For use on stream channels with depths greater than 3 inches (~ 8 centimeters) and velocities greater than 0.1 feet per second.

#### SonTek FlowTracker



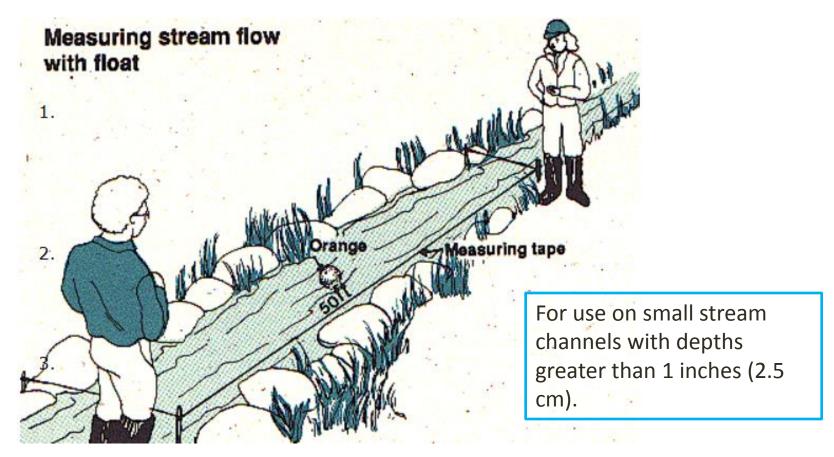
#### For use in:

- Natural streams
- Weirs and flumes
- Open channels




Measures velocities with a range as low as 0.001 m/s (0.003 ft/s) and up to 4.5 m/s (15 ft/s).

Max depth: Wadeable streams less than 1 meter deep Min depth: probe fully submerged (~ 2 inches)


#### Flow Probe





For use on stream channels with depths greater than 3 inches (~ 8 centimeters) and velocities greater than 0.1 feet per second.

#### Float Method



Because surface velocities are typically higher than mean or average velocities  $V_{mean} = k V_{surface}$  where k is a coefficient that generally ranges from 0.8 for rough beds to 0.9 for smooth beds (0.85 is a commonly used value)

#### Float Method



Depth

Area = Mean Depth x Mean Width Velocity = Feet/second Flow = Area x Velocity x Correction Factor (0.85)

#### Flow Path Variability

#### **Bucket Method**



- 5 gallons=0.65 cubic feet
- 0.65 cubic feet ÷ seconds to fill a five gallon bucket = flow (cfs)

For use on steep, confined, small stream channels (less than 1 cfs), usually where a culvert is present.



How long does it take to fill a 5 gallon bucket?

- 0.25 cfs = 2.7 seconds
- 0.5 cfs = 1.3 seconds

# Weir Method

- Temporary weirs installed on small streams
- Weir installation would require 1600 notification





For use on small stream channels with depth where other methods are not feasible, or a high degree of accuracy is required (Flow studies).

#### **Critical Riffle Depth**

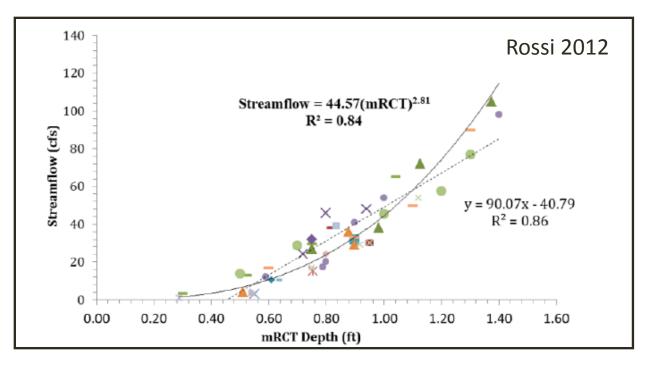
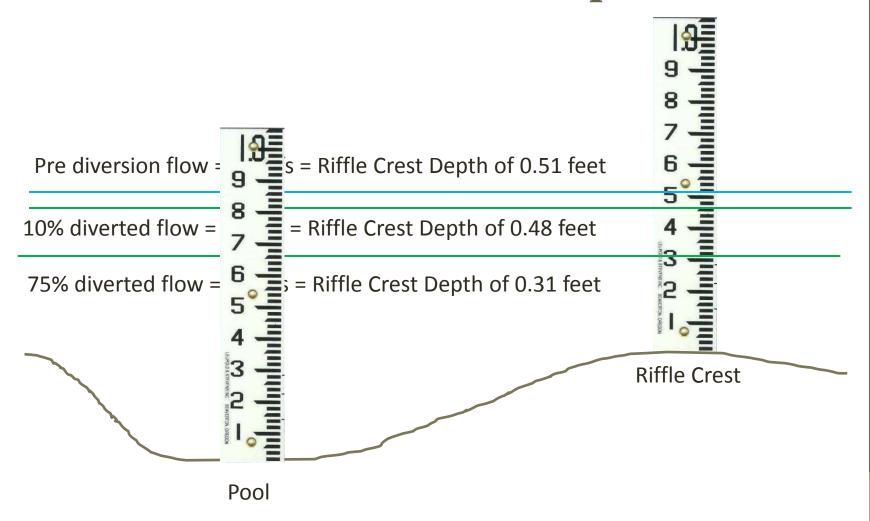


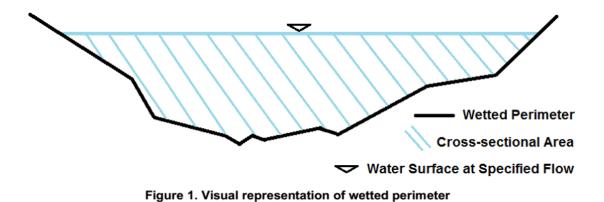

Photo and caption from Rossi 2012

Figure 5. A typical alluvial riffle crest observed below active channel flow. The V-shaped inflection in the water surface generally indicates the presence of the thalweg. Here, the white arrow points at the RCT location.


# Critical Riffle Depth Method

- Estimates stream flow by using relationship curve between discharge and median riffle crest depth
- Also for identifying minimum fish passage flows

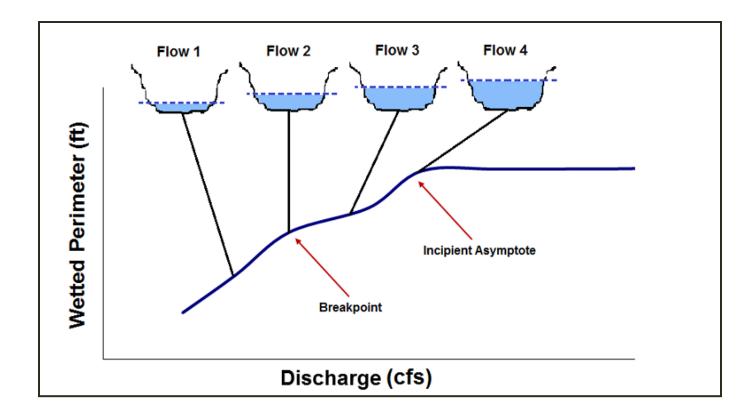



For use on larger streams with riffle crest depths greater than 3 inches or flows greater than 2 cfs.

#### **Critical Riffle Depth**



#### Wetted Perimeter Method


- Determines flow needs for maintaining productive riffle habitats
- Limited to riffles with rectangular streambed profiles
- Wetted Perimeter = (Average Depth x 2) + Wetted Width



For use on larger streams with riffle crest depths greater than 3 inches or flows greater than 2 cfs.

#### Wetted Perimeter Method

- Discharge + Wetted Perimeter measurements captured over a variety of flows to identify a *breakpoint*
- Breakpoint: Threshold where habitat for invertebrates decline



#### Wetted Perimeter Method

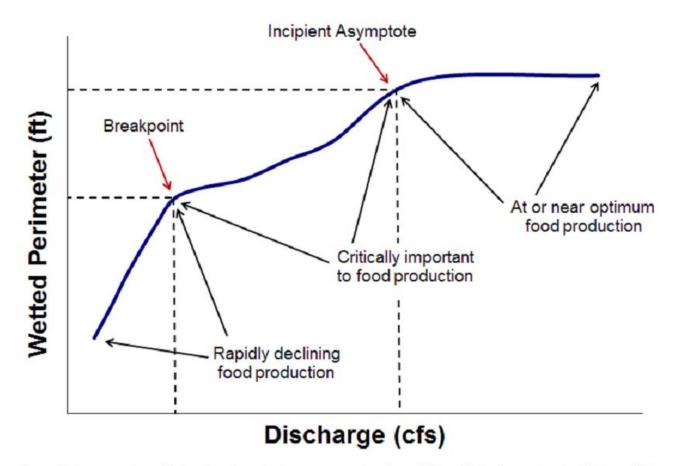
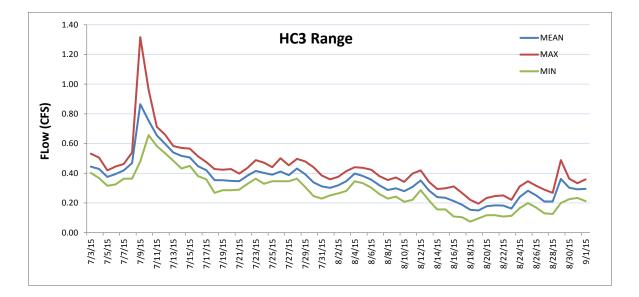




Figure 3. An example wetted perimeter - discharge curve showing relationship between breakpoints and fish food production

#### Pressure Transducers

- Measures water level continuously all year
- Stage-discharge relationships
- Demonstrates compliance from water tenders or other water users





#### Stage-discharge Relationship Methods Flow Studies

Flow studies show specific diversion rate and bypass flows that are effective at protecting aquatic species



#### **Field Materials**

| Equipment List                    | Cost          |
|-----------------------------------|---------------|
| Measuring tape                    | \$15          |
| Small hammer or mallet            | \$4           |
| Field data sheets                 | varies        |
| Float                             | \$1           |
| Flagging                          | \$2           |
| Permanent marker                  | \$1           |
| Camera                            | \$50 and up   |
| Calculator                        | \$1           |
| Small carabiners or spring clamps | \$1           |
| 5 gallon bucket                   | \$3           |
| Stadia rod                        | \$150 and up  |
| Staff gauge                       | \$40          |
| GPS                               | \$100 and up  |
| Flow meter                        | \$2000-\$4000 |
| Wading rod (USGS top-setting)     | \$400-\$500   |





# Minimizing Water Use and Alternatives to Drafting

- Rocking or Paving Roads
- Dust Palliatives
- Relocation of Sites
- Water Tanks



road-bridge/mag-chloride.aspx

# **Rocking or Paving Roads**

Reduces the need for applying water



# Dust Palliatives Types

- Water absorbing products
  - Calcium chloride, magnesium chloride, Sodium chloride (salt)
- Organic petroleum products
  - Asphalt emulsions, cutback asphalt, dust oils
- Organic nonpetroleum products
  - Animal fats, lignosulfonate, molasses/sugar beet, tall oil emulsions, vegetable oils
- Electrochemical products
  - Enzymes, ionic products, sulfonated oils
- Synthetic polymer products
  - Polyvinyl acetate, vinyl acrylic
- Clay additives
  - Bentonite, montmorillonite



©Jacobi et al. 2009

# Dust Palliatives Considerations

- Environmental impact: water quality and biota
  - Goodrich et al. 2009 study
- Application methods and maintenance
- Limitations and cost



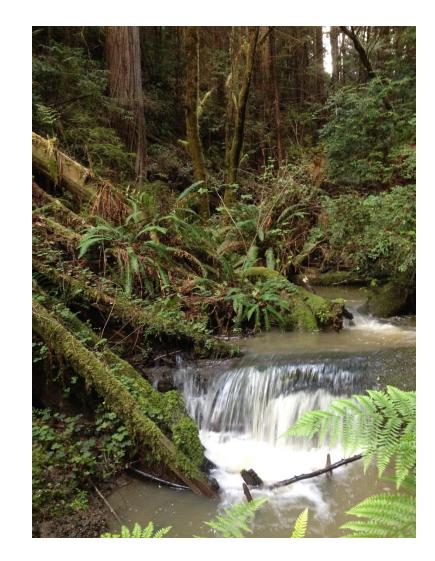


©Goodrich and Jacobi 2014

# Dust Palliatives Best Management Practices

- Water in the early morning (1 to 3am) to infiltrate the road
- Regular, light watering is more effective than less frequent, heavy watering
- Determine appropriate application rate and frequency to water roads only as needed
- Minimize driving speed




©Jacobi et al. 2009

#### **Relocation of Sites**

Propose drafting locations that do not have a significant impact to listed species

Examples:

- Some large Class II streams
- Above natural barriers



# Water Tank Benefits and Cost



- 5,000 gallon tank costs \$2,000-3,000 each
- Cost difference between tank installation and construction/maintenance costs of culvert inlet impoundment installation
- On small streams, tanks maintain constant bypass flows for downstream aquatic species more effectively than direct drafting

#### Protection Measures/ BMPs

- Develop a Drafting Plan
- Stream Drafting Rates
- Temporal and Spatial Variation in Streamflow
- Pond Drafting Rates
- Screened Intakes
- Treatment of Approaches
- Hazardous Wastes
- Prevent the Spread of Disease and Invasive Species

# Drafting Plan

- How much water is needed?
- What are the options for access to the most water?
- What methods will be used to draft water?
- What is the timing of operations?
- Is there sudden oak death or invasive species in the watershed?

 Is the water tender aware of all requirements?



# **Stream Drafting Rates**

- <u>Streams / aquatic</u> <u>features with listed</u> <u>species</u>
  - Diversion rates and protection measures determined on a case by case basis.
- <u>Class I and Class II</u>: Diversion / bypass flows should not exceed a rate that causes substantial adverse impacts to aquatic resources.
- <u>Class II</u>: Ensure diversions are not reducing Class I flows below levels necessary to avoid substantial adverse impacts to aquatic resources

### **Class II Drafting Rates** Avoid Impacts to Aquatic Resources

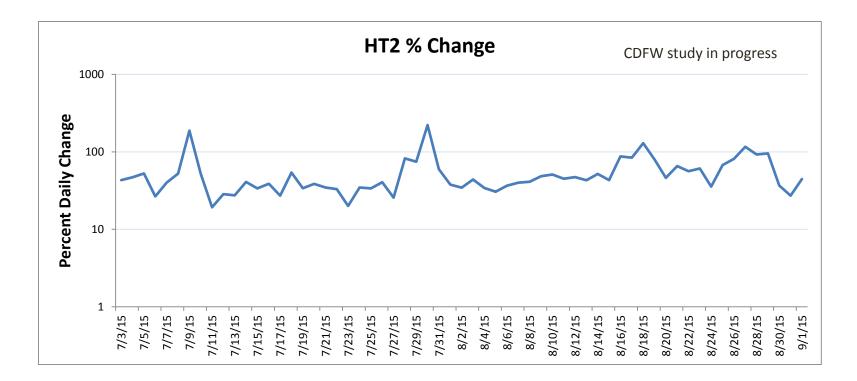
A maximum <u>25 percent</u> <u>drafting rate</u> is a low risk strategy for avoiding significant impacts to aquatic resources on <u>Class II streams</u>



- Wipfli (2002):
  - Headwater streams export significant macroinvertebrates to downstream fish bearing reaches
- Minshall and Winger (1968):
  - Significant macroinvertebrate drift when greater than <u>25</u> <u>percent</u> of flow was diverted
  - A reduction in macroinvertebrate food base for amphibians
- Ray (1958):
  - Prolonged drying of the stream bed can lead to amphibian mortality

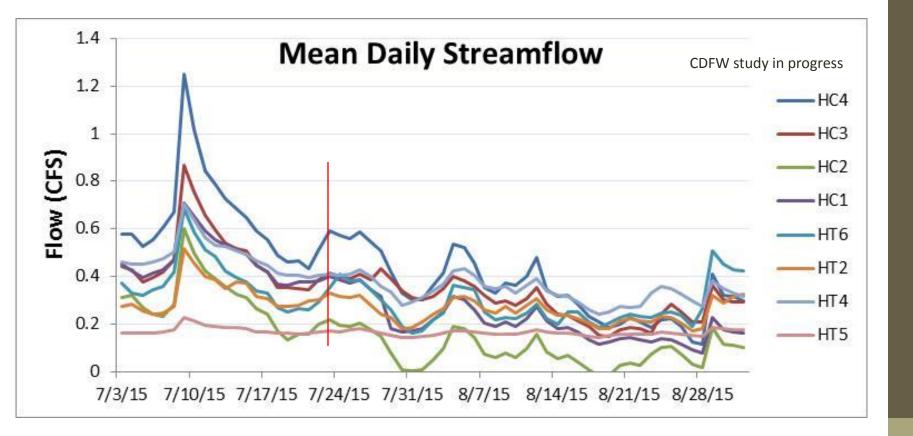
# Temporal and Spatial Variation in Streamflow

 Flow measurement sites vary due to subsurface flows and substrate volumes/porosity




 Specific stream reaches fluctuate daily and seasonally due to evapotranspiration




Evaporation + Transpiration = EvapoTranspiration (ETo)

## **Diurnal Flow Variation**



- On large streams (> 2 cfs), diurnal flow variation typically does not exceed 30%
- On small streams (< 2 cfs), diurnal flow variation can exceed 100%

# **Spatial Flow Variation**



# How to Compensate for Variation

On sites with low flows (< 1 cfs):

- Pay close attention because these streams have high spatial and diurnal variation
- Measure flow in multiple locations upstream and downstream to assess variation
- Use mean flows between sites to establish bypass flows and diversion rates



# Pond Drafting Measures

 Maintain enough water to avoid, reduce, or minimize substantial impacts in the pond and the pond outflow.



- For isolated ponds, establish benchmarks which will protect the shallow areas during critical amphibian breeding periods.
- Are there escape ramps for drafting pools?

# Pond Drafting

Northern red-legged frog egg masses

# **Screened Intakes**

- Avoid uptake/impingement of aquatic species
- Protects equipment from drawing in gravel or debris







# **Screened** Intakes

#### ASP watersheds

14 CCR § 923.7 [943.7, 963.7] (I)(3)(A)

Water drafting for timber operations shall screen all intakes to prevent impingement of juvenile fish against the screen. There are requirements for screens in Class I waters for the following:

- The size of slot openings
- The amount of screen surface submerged in water
- Maintenance
- The approach velocity (water moving through the screen)
- The diversion rate



### **Treatment of Approaches**







## **Treatment of Approaches**



- Straw Wattles
- Hay Bales
- Angular rock on approaches and "river rock" on parking pads (in flood prone areas such as gravel bars)
- Brow log

Prior to the winter period and after completion of operations, remove straw wattles, drip blankets, etc.

## Hazardous Waste

14 CCR § 923.7 [943.7, 963.7] (I)(3)(D)

To prevent soil and water contamination from motor oil or hydraulic fluid leaks, water drafting trucks parked on streambeds, floodplains, or within a WLPZ shall use:

- drip pans
- adsorbent or absorbent blankets
- sheet barriers
- other materials as needed

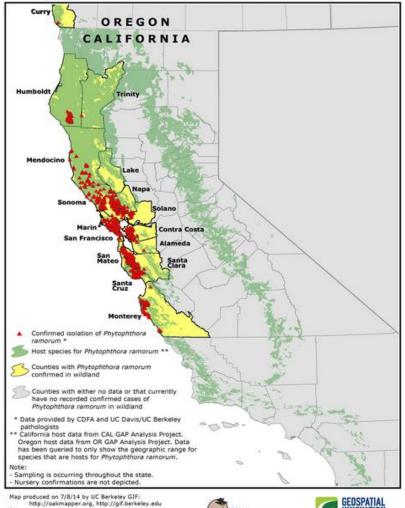


- Sudden Oak Death Syndrome
- Chytrid fungus
- New Zealand mudsnails
- Quagga and zebra mussels



Tanoak mortality in Humboldt Co. 2006




Dreissenid mussels

#### Sudden Oak Death

- Where are the known infestations?
- Draft from areas upstream of known infestations or from uninfested drainages
- If drafting from an infested watercourse, do not water roads with that source in uninfested areas
- Treatment with Ultra Clorox
  - 1 gallon of Ultra Clorox Bleach per 1000 gallons of drafted water

Source: CA Oak Mortality Task Force

Distribution of Sudden Oak Death as of July 8, 2014



http://cakimaper.org.http://f.berkeley.edu For more information about Sudden Oak Death, please visit the California Oak Mortality Task Force website at http://www.suddenoakdeath.org/



#### **Chytrid Fungus**

- Soaking gear in chemical disinfectants:
  - 70% ethanol for 20 seconds
  - .001% quaternary ammonium compound 128 for 30 seconds
  - 1% NaClO (bleach) for 30 seconds
  - 5% NaCl (salt) for 5 minutes
- Heating gear:
  - 100°C for 1 minute
  - 60°C for 5 minutes



Southern Mountain Yellow-legged Frog ©USGS

#### Equipment Decontamination Methods for Mudsnails and Mussels

First, scrub gear with a stiff-bristled brush to remove all organisms. Then use one of the following options:

- Dry
  - Allow equipment to thoroughly dry for a minimum of 48 hours
- Hot Water Soak
  - Immerse gear in 140° F or hotter water for a minimum of 5 minutes

• Freeze

Freeze below 32°F for at least 8 hours



©L. Breck McAlexander, CDFW

## **Current CDFW Drafting Studies**

- Class II tank water drafting study with Humboldt Redwood
  Company and Green Diamond Resource Company
  - Impacts on macroinvertebrates
  - Flow characteristics of small streams
- Active inspections and annual summary reports
- South Fork Eel Instream Flow study

### Available Resources

- CDFW Document Library: THP Water Drafting Folder <u>https://nrm.dfg.ca.gov/docume</u> <u>nts/ContextDocs.aspx?cat=THP-</u> <u>WaterDrafting</u>
- CDFW Water Branch's Instream Flow Program <u>https://www.wildlife.ca.gov/Co</u> <u>nservation/Watersheds/Instrea</u> <u>m-Flow</u>
- CNDDB/BIOS <u>http://www.dfg.ca.gov/biogeod</u> <u>ata/bios/</u>
- CDFW Aquatic Invasive Species Decontamination Protocol <u>nrm.dfg.ca.gov/FileHandler.ash</u> <u>x?DocumentID=43333</u>

- eWRIMS website: Map viewer of all water rights in California <u>http://www.waterboards</u> .ca.gov/waterrights/wate r issues/programs/ewri ms/index.shtml
- NOAA Water Drafting Specifications http://www.westcoast.fis heries.noaa.gov/publicat ions/hydropower/water drafting specification g uidelines.pdf

#### Conclusion Topic Overview

- Effects of Drafting
- Regulatory Considerations
- Common Water Drafting/Diversion Types
- Hydrology and Geomorphology Considerations
- Methods of Streamflow Measurement
- Minimizing Water Use and Alternatives to Drafting
- Protection Measures/BMPs

#### **Conclusion** Take Home Messages

- Water drafting has many different variables to consider when assessing impacts
- Choosing the best management practice is site-specific
- An entity may not "substantially divert" without complying with FGC § 1602
- Consultation with local agencies is available



### References

- Bolander, P., and A. Yamada. 1999. Dust Palliative Selection and Application Guide, Project Report. 1977-1207-SDTDC. U.S. Department of Agriculture, Forest Service, San Dimas Technology and Development Center, CA
- Cafferata, P., Spittler, T., Wopat, M., Bundros, G., and Flanagan, S. 2004. Designing Watercourse Crossing for Passage of 100 Year Flood Flows, Wood, and Sediment. California Department of Forestry and Fire Protection, Sacramento, CA.
- California Department of Fish and Wildlife. 2013. Aquatic Invasive Species Decontamination Protocol. Invasive Species Program, Sacramento, CA.
- California Department of Fish and Wildlife.2013. Standard Operating Procedure for the Wetted Perimeter Method in California. Instream Flow Program, Sacramento, CA.
- California Oak Mortality Task Force. 2014. Sudden Oak Death Guidelines for Forestry. Berkeley, CA. <a href="http://www.suddenoakdeath.org/wp-content/uploads/2014/12/forestry-08-10-with-new-2014-map.pdf">http://www.suddenoakdeath.org/wp-content/uploads/2014/12/forestry-08-10-with-new-2014-map.pdf</a>> Accessed 15 March 2016
- Goodrich, B., and W. Jacobi. 2008. Magnesium Chloride Toxicity in Trees. Fact Sheet No. 7.425. Revised 2014. Colorado State University, CO.
- Goodrich B, Koski R, Jacobi W. 2009. Monitoring Surface Water Chemistry Near Magnesium Chloride Dust Suppressant Treated Roads in Colorado. Journal Of Environmental Quality 38(6):2373

### References

- Humboldt Redwood Company. 2004. Gaging Streams for Estimating Discharge, WOP-02. Humboldt Redwood Company LLC, Scotia, CA.
- Ingebritsen, S., Sherrod, D., and R. Mariner. 1992. Rates and Patterns of Groundwater Flow in the Cascade Range Volcanic Arc, and the Effect on Subsurface Temperatures. Journal of Geophysical Research 97: 4599-4627
- Johnson, M.L., Berger, L., Philips, L., and R. Speare. 2003. Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid *Batrachochytrium dendrobatidis*. Diseases of Aquatic Organisms 57:255-260
- Lundquist, D., and D. Cayan. 2002. Seasonal and Spatial Patterns in Diurnal Cycles in Streamflow in the Western United States. Journal of Hydrometeorology 3: 591-603
- Minshall, Wayne G. and Parley V. Winger. 1968. The Effect of Reduction in Stream Flow on Invertebrate Drift. Ecology 49: 580-582
- Mitchem, Charles E. 1999. A Comparative Study of Stream-Gaging Methods Employed in Nonpoint Source Pollution Studies in Small Streams. A Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA.

### References

- National Marine Fisheries Service, Southwest Region. 2001. Water Drafting Specifications. Engineering Section, Santa Rosa, CA.
   <a href="http://www.westcoast.fisheries.noaa.gov/publications/hydropower/water\_drafting\_specification\_guidelines.pdf">http://www.westcoast.fisheries.noaa.gov/publications/hydropower/water\_drafting\_specification\_guidelines.pdf</a>> Accessed 3 February 2016
- Ray, Carleton. 1958. Vital Limits and Rates of Desiccation in Salamanders. Ecology 39: 75-83
- Rossi, Gabriel Jacob. 2012. Developing Hydraulic Relationships at the Riffle Crest Thalweg in Gravel Bed Streams. A Thesis Presented to the Faculty of Humboldt State University, Arcata, CA.
- U.S. Department of the Interior. 2015. How Streamflow Is Measured Part 2: The Discharge Measurement. United States Geological Survey, Washington DC.
   <a href="http://water.usgs.gov/edu/streamflow2.html">http://water.usgs.gov/edu/streamflow2.html</a> Accessed 7 December 2015
- Waananen, A.O. and J.R. Crippen. 1977. Magnitude and Frequency of Floods in California. U.S. Geological Survey. Water Resources Investigation 77-21. Menlo Park, CA.
- Wipfli, Mark and David Gregovich. 2002. Export of Invertebrates and Detritus from Fishless Headwater Streams in Southeastern Alaska: Implications for Downstream Salmonid Production. Freshwater Biology 47: 957-969