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Abstract — Recent developments in non-invasive fecal DNA technologies provide potentially
cost-effective tools for estimating and monitoring mule deer (Odocoileus hemionus) population
parameters. We investigated the efficacy of such approaches as applied to the post-fawning
migratory portion of the Pacific deer herd on its summer range (~500 km?) in the central Sierra
Nevada Range during 2013 and 2014. Objectives were to (1) obtain estimates of population
parameters for the Pacific deer herd, (2) use those results in combination with statistical power
modeling to develop a set of guidelines for design of long-term monitoring programs, and (3)
provide general cost estimates associated with such programs.

First, we applied noninvasive DNA-based methods, including non-spatial capture-recapture (CR)
and spatial capture-recapture (SCR), to estimate abundance, density, sex ratio, and survival, as
well as to model habitat use of the Pacific deer herd. During the field study, we collected 883
pellet samples, including 477 collected in 2013 and 406 collected in 2014. From 411 samples
genotyped at 8—10 microsatellite loci, we identified 209 unique individuals sampled 1-13 times
each. The sex ratio (M:F) estimated directly from genotyped individuals across the study area
was 62% (95% CI: 41-93%) in 2013 and 65% (95% CI: 45-94%) in 2014. Using non-spatial
Huggins closed-population CR modeling, we estimated the average abundance (N) across sites at
6.9 (95% CI: 4.4-9.4) deer per transect in 2013 and 7.9 (95% CI: 5.5-10.3) deer per transect in
2014. Based on the MMRD method of estimating effective sampling area (0.91 km? per
transect), these estimates translated to estimated density (D) of 7.6 (95% CI: 4.8—10.3) deer/km?
in 2013 and 8.7 (95% CI: 6.0-11.3) deer/km? in 2014. The precision of study-area wide
abundance estimates was estimated in terms of the coefficient of variation (CV), which was
17.4% in 2013 and 14.6% in 2014. Using SCR, which estimates density directly without
arbitrarily defining effective sampling area, we estimated density averaged over the study area at
D =5.0 (95% CI: 2.3-7.7) deer/km?in 2013 and D = 5.1 (95% CI: 3.0-7.2) deer/km? in 2014.
Corresponding N estimates for the entire study area were 2,574 (95% CI: 1,083—4,065) deer in
2013 and 2,627 (95% CI: 1,511-3,743) deer in 2014. These estimates were lower than the CR
density estimates, which implied that the latter were biased upwards due to underestimation of
effective sampling area. Using SCR to model habitat variables indicated that density was highest
on relatively flat, north-facing slopes and in vegetation corresponding to high predicted
suitability for deer based on California Wildlife Habitat Relationships (CWHR). Use of non-
spatial CR, robust-design modeling produced estimates of annual survival (S) at 0.73 (SE = 0.43)
for F and 0.59 (SE = 0.48) for M; the difference was not statistically significant.

Next, we estimated the precision of annual abundance estimates necessary to achieve 80% power
to detect trends with varying magnitudes and type I error rates both for annual and biennial
surveys. We then assessed the optimal allocation of effort with respect to numbers of transects
per site versus numbers of sampling occasions per transect. We conclude that, beyond a
minimum of 3 sampling occasions, increasing numbers of transects is a more efficient use of
effort than increasing numbers of sampling occasions. Emphasizing numbers of transects over
numbers of sampling occasions per transect also increases robustness to spatial heterogeneity.
Excluding costs of permanent staff time, but including seasonal staff and laboratory analyses,
costs of sufficiently intensive monitoring studies could range from $25,000 to $67,000 per year,
depending on the size of the project.
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INTRODUCTION

Mule and black-tailed deer (Odocoileus hemionus) abundances have fluctuated
significantly over the past century in the western USA, yet the causes remain unclear (Connolly
1978, Unsworth et al. 1999, Ballard et al. 2001, Hurley et al. 2011). Understanding the
potentially complex processes causing fluctuations, which may include both top-down and
bottom-up factors, requires accurate long-term data (Forrester and Wittmer 2013). Of central
importance are accurate estimates of deer abundance. At present, few methods are available to
estimate deer abundance that are equally effective in all habitat types. Consequently, there is a
need to develop methods for estimation of deer abundance that are robust across the diverse
habitats of the western USA (CDFW 2015).

Traditional methods to estimate abundance of deer are difficult to standardize because
they vary in utility across landscape types. For example, methods relying on high visibility, such
as aerial transect surveys or direct counts, provide poor estimates in areas of dense vegetation
cover (Caughley 1974, Floyd et al. 1979, DeYoung 1985, Pollock and Kendall 1987). Trend
indexes, which assume a constant relationship with abundance over time, enable qualitative
inferences about localized population trends, but offer no ability to compare abundances among
locations. These indexes, which include hunter surveys, sign counts, and spotlight surveys, also
suffer from low precision and unquantifiable sampling bias (Anderson 2001, Collier et al. 2013).
Statistically based sampling methods, which directly estimate abundance (N) and/or density (D),
include aerial surveys of transects or quadrats, and capture-recapture (CR) or spatially-explicit
capture-recapture (SCR) models. Of these methods, CR and SCR methods tend to provide the
most accurate estimates and are the least prone to habitat-specific or observer biases (Keegan et
al. 2011). The CR and SCR models also can incorporate and control for heterogeneity in
detection probability. Because physically marking and re-capturing or re-sighting deer can be
logistically and financially prohibitive, the use of noninvasive genetic approaches to “capture”
and “recapture” individuals from DNA left in the environment may offer the only practical
means of applying CR and SCR broadly (Waits and Leberg 2000, Schwartz et al. 2006). Such
approaches utilize DNA from hair or epithelial cells remaining on the outside of fecal pellets to
construct individual genotypes (Lukacs et al. 2005).

Both traditional CR and SCR methods have advantages. The SCR approaches are
designed to estimate density directly based on modeling the decay of individuals’ probabilities of
capture with increasing distance from their activity centers. By explicitly accounting for the
spatial nature of sampling and animal movements, SCR also reduces the bias due to edge effects
that is associated with non-spatial CR analyses (Wilson and Anderson 1985, Efford 2004,
Borchers and Efford 2008). In traditional (non-spatial) CR, D is often calculated using a buffer
strip around the sampling area, the width of which is estimated using measures such as mean
maximum distance moved (MMDM; Otis et al. 1978), also referred to as mean (or median;
Lounsberry et al. 2015) maximum recapture distance (MMRD; Brinkman et al. 2011). These
buffer-strip methods, which are intended to reduce positive bias in estimates of D, are often
inadequate in that the actual effective sampling area tends to be larger than estimated (Wilson
and Anderson 1985, Parmenter et al. 2003, Ivan et al. 2013). Another attribute of SCR is to
provide an integrated framework for modeling density surfaces from spatial and habitat variables
(Royle et al. 2013, Efford and Fewster 2013), which facilitates inferences about wildlife-habitat
relationships and the extrapolation of models to obtain D estimates beyond the sampling sites
when D is heterogenous across the study area. On the other hand, an advantage of traditional CR
methods is that they can be employed over consecutive years to estimate survival, which
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facilitates development of mechanistic demographic models to complement abundance trend
models in long-term monitoring programs.

The utility of CR and SCR approaches to abundance or density estimation for wildlife
management ultimately depends on statistical power and cost-effectiveness, particularly as
applied to long-term monitoring programs addressing populations on regional scales. In
principle, these approaches can be employed over larger areas in multiple years and across a
diversity of habitats to cost-effectively monitor population trends of deer over time (Brinkman et
al. 2011, McCoy et al. 2014, Lounsberry et al. 2015). Planning monitoring programs that rely on
this method requires knowledge of precision of annual abundance estimates and its relationship
to statistical power to detect trends over time.

The primary objectives of the field study (Section I) were to use and compare non-spatial
and spatial CR methods to (1) estimate N and D of the migratory portion of the Pacific deer herd,
a partially migratory mule deer (O. h. californicus x columbianus) population, on their summer
range in the central Sierra Nevada Mountains of California and (2) explore approaches to
extrapolating N and D to broader scales, including use of SCR to model deer-habitat
relationships in terms of D. We also estimated sex ratio and sex-specific survival. The primary
objectives of Section II were to (1) determine the precision required of annual and biennial CR
abundance estimates to detect multi-annual trends of varying magnitudes with specified power
and type-I error rates, (2) assess optimal allocation of effort between numbers of transects and
numbers of surveys per transect to maximize precision within years (and, therefore, power to
detect trends across years), and (3) develop a set of tentative guidelines for study design and
frequency of monitoring. Section III provides cost estimates based on results of the preceding
sections to aid in planning of monitoring programs.



Section I. Estimating population abundance, density, sex-ratio, and survival

STUDY AREA

The study area comprised the summer migratory range of the Pacific deer herd, which
is located on the western slopes of the central Sierra Nevada, in the El Dorado National
Forest, California, USA (Fig. I-1). Elevation in the study area ranges from approximately
1600 to 2300 m. The climate is Mediterranean, with warm, dry summers and cold, wet
winters, with snow present above 1600 m (Dahlgren et al. 1997). Temperatures range from -
18 °C in winter to 33 °C in summer (California Department of Water Resources, 2005-2015).
The predominant vegetation types are coniferous forests, chaparral, and montane hardwood
forest. A variety of grasses and forbs are intermixed throughout. Principle California Wildlife
Habitat Relationships (CWHR; Mayer and Laudenslayer 1988) types include Sierran Mixed
Conifer, Montane Chaparral, Montane Hardwood, Mixed Hardwood Conifer, White Fir
(Abies concolor), Red Fir (Abies magnifica), Jeffrey Pine (Pinus jeffereyi), and Ponderosa
Pine (Pinus ponderosae). Large reservoirs occur throughout the study area, including Loon
Lake (~5.2 km?), Ice House Reservoir (~2.7 km?), and Union Valley Reservoir (~10 km?).

Once snowpack begins to melt in late May, deer migrate upward from their winter
range to the west in the surrounding foothills to occupy the study area, taking advantage of the
appearance of new growth in late spring/early summer (Hinz et al. 1981). Migratory deer
display philopatric behavior with strong site fidelity in home range selection (Verme 1973,
Loft et al. 1989, Livezey 1991, Lesage et al. 2000). From Jun to the time of the first winter
storms in Oct, deer occupy home ranges that remain relatively stable summer after summer
(T. Weist, CDFW, personal obs.), as in other migratory deer populations (Tierson et al. 1985,
Garrot et al. 1987, Kufeld et al. 1989, Brown 1992). The study area is in the D-5 deer hunt
zone, where seasonal antler-only harvest begins in mid Aug (archery) and late-Sep (general).
Sampling ranged from Jun 3 to Aug 8 in 2013 and from Jun 23 to Sep 10 in 2014 with the
intent to ensure enough time to sample the study area adequately, while minimizing overlap
with fawning, seasonal migrations, and hunting season, which would violate assumptions of
population closure. Although fawning can occur throughout Jun (violating the assumption of
population closure to some extent), most sampling occurred after fawns were born, such that
our N estimates reflected a post-breeding survey (see Methods and Results for tests of
closure).
Pacific Deer Herd

The population, referred to as the Pacific deer herd, is composed of migratory and
resident California mule and Columbian black-tailed deer, and ranges over approximately 914
km?in El Dorado County, CA and a southern portion of Placer County, CA (Hinz et al. 1981).
The winter range is located in the foothills west of the summer range, 600—1,500 m in
elevation. In the summer, some individuals migrate up-slope to between 1,600 and 2,500 m in
elevation, where meadows containing grasses and forbs compose an important forage habitat.
The 1981 Pacific deer herd management plan indicated that the population had been
experiencing significant fluctuations since the late 1960s. From 1976 to 1980, abundance
estimates derived from herd composition counts and harvest data, in conjunction with change-
in-ratio estimators, suggested an average D of ~5—6 deer/km” on the summer range (Selleck
and Hart 1957). Based on these (unverified) abundance estimates, the goal in 1981 was to
increase habitat range capacity >50% by 1990 to sustain approximately 8 deer/km?* on
summer range.



METHODS
Sampling Design and Protocol

Our sampling design was similar to those of previous noninvasive CR deer studies
(Brinkman et al. 2011, Lounsberry et al. 2015). Specifically, we used a blocked sampling
design to ensure representative sampling of the study area. To adequately sample across the
different habitat types in the study area, we (1) determined the proportional composition of
the CWHR types in the study area (512 km?), (2) overlaid a grid composed of 30-km? cells,
and (3) selected 4 of the cells such that their combined habitat composition was proportionally
similar to that of the entire study area and for which no two edges were shared. To ensure that
sampling of each cell (hereafter, “site” or “block™) was unbiased, we selected starting points
at random for n = 6 transects within each of the k = 4 sites, representing the sample units (N =
24). We established 1.2-km long by 2-m wide belt transects from each starting point in a
general direction determined by random compass bearing, except that we followed game trails
when they were encountered (Fig. [-2). At intersections of trails, transects followed game
trails that resulted in the closest agreement with the initial compass bearing. Where no trail or
sign of deer was apparent, we continued along the direction of the compass bearing.

We sampled transects every 7—-10 days to allow sufficient time for pellets to
accumulate for recapture, while minimizing the time pellets were exposed to the environment.
We only sampled pellets from piles that appeared sufficiently fresh for DNA extraction (i.e.,
with a mucous sheen or no sheen but un-cracked). From each pile, we collected 4—6 pellets in
a 15 mL centrifuge tube containing a sufficient volume of 95-100% ethanol to submerge all
pellets for DNA preservation. Importantly, pellets were put into ethanol on the same day as
collection. Excess pellets were swept off the transect path or buried to avoid false recaptures
on subsequent sampling occasions. Each transect was sampled 4 times between early Jun and
early Aug in 2013 and 3—6 times between late Jun and early Sep in 2014. In 2014, we
intended to compare results from 4 vs 6 sampling occasions for each transect, but a large
adjacent forest fire, the King Fire in Pollock Pines, CA, burned approximately 400 km? west
of the study area, which remained closed from mid-Sep to early Oct, 2014. As a result, the
number of sampling occasions varied for each transect, with all 24 transects sampled on 3
occasions, 19 transects sampled on 5 occasions, and 17 transects sampled on all 6 occasions.
In 2014, between Jun 23 and Jul 9, we also collected a subset of samples in 20 ml scintillation
vials containing buffer ATL (Qiagen, Valencia, CA) to test the efficacy of buffer ATL in
preserving DNA over time during storage (<1 month vs. >2 months) prior to extraction
(Appendix A). Samples were covered to protect from exposure to UV radiation and
transferred to the Mammalian Ecology and Conservation Unit of the University of California
Davis Veterinary Genetics Laboratory for processing.

DNA Analysis

We used Qiagen DNeasy Blood and Tissue Kits to extract DNA from the surfaces of
fecal pellets, using a protocol modified for deer fecal DNA extraction (Lounsberry et al. 2015;
Appendix B). We removed 2—4 pellets for each sample from their respective tubes and dried
them at 21°C for 45 minutes to remove residual ethanol. We placed the dried pellets in 20 ml
scintillation vials and pipetted 1.5 ml buffer ATL into each vial. These vials were then placed
on a rocking apparatus for 1 h to wash the epithelial cells from the surfaces of the pellets. We
then followed the manufacturer’s protocols designed for blood to extract DNA from the
epithelial cell/buffer ATL solution. We included 1 extraction blank for every 7-11 samples as
a negative control to detect potential contamination.



To genotype samples, we used 10 microsatellite markers and a sex-typing marker from
a highly conserved portion of the Y chromosome, as described previously (Lounsberry et al.
2015). Specifically, we amplified markers using polymerase chain reaction (PCR) with
reagents from the Qiagen multiplex PCR kit (Qiagen). Each 10 ul PCR mixture contained 1.0
ml of extracted DNA, 0.5 ml RNase-free water, 5.0 ml Qiagen Multiplex Mastermix, 1.0 ml
Q-solution, and 2.5 ml of the following primer mixture: ADCYC (0.32uM), BM6506
(1.4uM), CELBO (1.2uM), CERVIDI (0.36uM), ETH152 (0.32uM), SBTD04 (0.36uM),
SBTDO5 (0.92uM), SBTDO06 (0.44uM), SBTDO07 (0.36uM), TGLA94 (0.54uM), SRY
(2.2uM). The reaction concentrations of each primer pair were 25% of the stock
concentrations listed above and primer sequences and references can be found in Lounsberry
et al. (2015). We used the following thermal profile: 15 min at 95°C, followed by 33 cycles
of 30 sec at 94 °C, 1.5 min at 58 °C, 1 min at 72 °C, followed by 10 min at 72 °C. We used an
ABI 3730 (Applied Biosystems, Grand Island, NY) and internal size standards (500-LI1Z;
Applied Biosystems) for electrophoresis and manually scored alleles using electropherograms
visualized in Program STRand (version 2.4.89; Toonen and Hughes 2001). We used a
multiple-tube approach, whereby each DNA sample was genotyped in two independent PCR
reactions. All PCR sets were conducted with two negative PCR controls to detect potential
contamination.

For each sample, we combined replicate multi-locus genotypes into a single composite
genotype. To reduce error owing to allelic dropout from low quality fecal DNA samples, we
excluded samples with <8 successfully amplified microsatellite loci (Lounsberry et al. 2015).
To arrive at an individual identification for each sample, we used the Allelematch package in
R, which assigns and matches genotypes to unique individual IDs based on an optimal
maximum threshold number of mismatching loci (Galpern et al. 2012, R Core Team 2012).
Sex Ratio

We calculated sex ratio directly from the genotypes, i.e., the ratio of the number of M
individuals to the number of F individuals. We estimated the 95% confidence limits for this
ratio by first expressing them as proportions (p) of samples that were female, estimating 95%
confidence limits for these proportions based on Zar’s (1999) method utilizing the
relationship between the F and binomial distributions, and then back-transforming these
confidence limits to ratios [i.e., p/(1 — p)].

Non-Spatial Capture-Recapture Abundance and Density Estimation

We estimated N for each transect in each year using Huggins closed capture models in
Program MARK (Huggins 1989, White and Burnham 1999). Huggins closed capture
modeling uses a conditional likelihood approach to derive N, which allows inclusion of
individual covariates in a linear modeling framework to account for heterogeneity in
probability of capture. Specifically, Huggins closed capture estimates two parameters: p, the
probability of capture, and ¢, the probability of recapture, which are, in turn, used to derive N.
The model assumes that the population is closed to births, deaths, immigration, and
emigration; probability of capture is the same across individuals (unless a heterogeneity
model is used), and individual identifications are correct. To ensure that additions and
removals were negligible during each sampling period, we used the Stanley-Burnham test for
closure, which is more sensitive than other tests (Stanley and Burnham 1999), using
CloseTest version 3 (Stanley and Richards 2011).

We tested two pre-defined models: the null model, MO (Otis et al. 1978), assuming
capture probabilities did not differ by time or individual, and an individual heterogeneity



model, Mh2 (Pledger 2000), which allowed capture probabilities to vary between 2 random
finite latent classes. We tested these models with and without sex as an individual covariate.
We did not include models that tested for a behavioral effect on probability of capture because
our sampling was non-invasive, nor did we test for a time effect, as our sampling was
asynchronous among transects. Because only one capture per individual can be considered in
a particular sampling occasion, we collapsed multiple captures of the same individual within a
sampling occasion into a single capture event. In 2014, we ran models using the data from
only 3 sampling occasions per transect, which enabled us to estimate abundances for all 24
transects. Final model selections were based on Akaike’s Information Criterion, corrected for
small sample sizes (AICc; Burnham and Anderson 2002), and models were averaged
according to their AICc weights for final N estimates. In all of these analyses, we obtained
transect-specific estimates of N to facilitate analyses of effects of year, site, sex, and
interactions among these variables.

Spatiotemporal heterogeneity in abundance and density.—We conducted fully
factorial analysis of variance (ANOVA) using SYSTAT (version 9.0, SPSS Incorporated,
Chicago, IL) to assess differences in abundance between years and among sites. We
converted transect-specific N to D by dividing N for each transect by an estimate of effective
sampling area using a buffer strip of width equal to full MMRD around the sampling area
(Parmenter et al. 2003). Specifically, we used the mean of the maximum distance between
recaptures for each individual captured in 2014 (263 m), buffered around a 1.2 km long
transect of width 2 m (0.91 km?). We used the MMRD from 2014 as it was the larger of the
two MMRD measures, and thus resulted in a more conservative D.

Quantifying precision— Quantifying precision of study area-wide annual abundance
estimates, including 95% confidence intervals and coefficients of variation (CV), is important
to the design of monitoring programs aimed at detecting trends. We used the Wald 95%
confidence interval, which is estimated using the standard error (SE) and the t-distribution for
the corresponding degrees of freedom (df), and defined the CV as the SE divided by the
estimate (Zar 1999). Estimation of the area-wide confidence intervals and CV, in turn,
depends on the study design. In the simple case of a homogeneous landscape with a single
level of replication (e.g., randomly placed transects throughout the study area), the variance
would be calculated directly from the individual transects’ abundance estimates, Ni, where i =
transects 1 to N. However, in a blocked design, where representative sites (blocks) are
chosen, within each of which n transects are randomly placed (as in the present study), the
variance is decomposable in terms of the primary (transects within sites) and secondary
(among sites) levels of analysis. The variance that arises from the n transect estimates within
sites must be incorporated as random and is therefore (inversely) proportional to the precision.
However, the among-site variance primarily reflects spatial variation in abundance (i.e., real
heterogeneity). As long as each site is sampled in every annual survey and spatial variance
assumed to be independent of temporal variance, the among-site variance should not
significantly affect power to detect multiannual trends. Therefore, we obtained study area-
wide annual estimates of precision (95% CI, CV) based solely on the within-site variance
component. Specifically, we estimated the annual area-wide CV using the mean square error
(MSE) from a one-way analysis of variance (ANOVA) of the transect-specific abundance
estimates with site as a blocking factor. We estimated the 95% CI using the t-distribution
corresponding to N — k df and the CV as follows:



ov = JMSE/error df

— %
where the error df, 20, was calculated as the total number of transects (N = 24) minus the
number of sites (k = 4), and N represents the average abundance estimate across all N = 24
transects..
Spatial Capture-Recapture Density and Abundance Estimation

We estimated deer density using SECR, an R program that applies maximum
likelihood estimators in SCR analyses. This approach combines a “state model” and an
“observation model.” The state model is a probability distribution of animal locations whereas
the observation model is a probability distribution describing animal detections, given animal
locations. The state model assumes a Poisson point process distribution of activity centers,
the intensity of which translates directly to D. This can be either homogenous, if density is
assumed to vary randomly across the landscape, or heterogeneous, if density is allowed to
vary across space, €.g., in relation to some set of habitat variables. The observation model
estimates probability of capture at detectors, which decays with increasing distance from
activity centers, according to a detection function (Efford et al. 2005, Efford et al. 2009). The
parameters that are estimated are density (D), the capture probability of an individual at its
activity center (g0), and the scale of movement (). The combination of g0 and ¢ in a
detection function is analogous to p in non-spatial CR models. As with non-spatial closed CR,
SCR analysis assumes that the population is demographically closed, but, in contrast,
explicitly allows for spatial variation in detection (Efford et al. 2009). To determine an
appropriate function for the decay of probability of detection as distance increases from an
activity center, we compared the AICc values for null models using exponential and half-
normal distributions.

In SECR, the user specifies a buffer width around the sampling detectors, which is the
region of integration over which the model parameters are estimated. To prevent bias in D,
the region of integration must be large enough that animals with activity centers outside of the
boundary will not be detected by the detector layout. The recommended buffer width size is 4
times the “root pooled spatial variance” (RPSV), a measure of the 2-dimensional dispersion of
sample points (Calhoun and Casby 1958, Slade and Swihart 1983), which for our data was
approximately 1000 m. After assessing potential bias using built-in functions of SECR, we
specified a final buffer width of 1500 m and a grid cell spacing of 100 m. Lakes were
excluded from the region of integration as non-habitat using the El Dorado Fire Return
Interval Departure GIS layer (Safford et al. 2011) in QGIS (QGIS version 2.12,
http://qgis.osgeo.org); we also used QGIS to quantify CWHR type, size, and density.

We input sampling transects as a series of “count” detectors spaced every 200 m along
each transect. We used all detections in analyses, including those of multiple individuals and
of multiple detections of the same individual at a given detector in a particular sampling
occasion (Efford et al. 2009). This contrasted with the non-spatial CR analyses, for which
multiple samples from an individual on the same transect during the same sampling occasion
were collapsed into a single capture. In SCR, we also incorporated a usage covariate matrix
that specified the varying number of occasions (3—6) detectors were used in 2014, which
enabled us to use all sampling occasions in 2014, rather than limiting analyses to the 3
sampling occasions used in CR. As in CR, we used the data only from sampling occasions 2—
4 in 2013 to avoid violations of closure.




We considered both a null model (M0) and an individual heterogeneity model (Mh2)
to estimate the 2-parameter probability of capture (g0 and o). Rather than using latent classes,
as in CR analyses, we assigned the two classes (h2) by sex a priori, which is analogous to
using sex as an individual covariate in CR analyses. For all models, we used the data from
both years for analyses, but allowed g0 and D to vary by sampling year. To reduce the number
of parameters, we kept o constant between years.

To test for heterogeneous density across the sampling area, as well as explore deer-
habitat relationships, we considered the influence of topographical and habitat variables
known to impact space usage by deer (Long et al. 2008). Topographical variables included
elevation (m), slope%, cosine of the aspect, and sine of the aspect. We also included distance
(m) to nearest road, including actively maintained human-use trails. Lastly, we included
mule-deer habitat suitability values, which ranged from 0 (poor habitat) to 1 (optimal habitat)
and were estimated with CWHR version 9.0 (CDFW 2014). The values represented the
average of expert-derived cover and feeding scores for habitat types of a particular size and
stageWe then superimposed a grid of 150 m x 150 m cells over the study area and assigned to
each grid cell the average values for each variable, which were incorporated into the region of
integration for density modeling. We used AICc to select the best fitting models. We obtained
N for each year for the larger study area by discrete summation of the model-averaged D
from the top-fitting models. Specifically, we predicted D for 22,685 150 m X 150 m grid cells
across the study area, multiplied each cell-specific D by 0.0225 km? (i.e., the area of one cell)
to obtain a cell-specific N, and then summed N across cells to obtain a total, study area-wide
N. The study area-wide SE also was computed as the sum among cells.

Robust Design Estimation of Demographic Parameters

To estimate survival, we used a robust design model (Pollock 1982, Kendall et al.
1995), implemented in program MARK. The robust design model combines closed and open
population modeling. Specifically, we used Huggins closed population modeling within each
annual season (i.e., summers 2013 and 2014, termed the “secondary” sampling occasions) to
estimate the probability of capture, p, and used open population modeling to estimate the
probabilities of survival (S) and emigration (/) between the 2013 and 2014 annual seasons
(i.e., the “primary” sampling occasion). We could not estimate a third parameter, the
probability of the animal staying away from the study area, given that it emigrated in a prior
session (), as its estimation requires a minimum of 3 primary sampling occasions. We tested
4 models: (1) all parameters (S, »’, p) varied by sex, (2) only the demographic parameters (S,
¥ 7) varied by sex, (3) only p varied by sex, and (4) all parameters were constant (i.e., the null
model).

RESULTS
Genotyping and Individual Identification

We collected a total of 883 samples, including 477 pellet groups collected in 2013 and
406 collected in 2014 (Table I-1). After eliminating samples with <8 (out of 10) loci
amplifying, 411 samples remained for analyses, including 158 (33%) from 2013 and 253
(63%) from 2014. The reason for the low genotyping success in 2013 is unclear but could
have resulted from samples having been stored for multiple days inside an enclosed vehicle
that year. Although these samples were protected from UV radiation, ambient temperatures
inside the vehicle could be very high during daylight hours. From the 411 successfully
genotyped samples, we identified 209 unique individuals based on distinct multi-locus
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genotypes. This equated to approximately 2 captures per individual on average (range: 1-13
captures per individual). Thirty-two individuals (30%) initially captured in 2013 were also
captured in 2014. The sex ratio (M:F) estimated directly from genotyped individuals across
the study area was 62% (95% CI: 41-93%) in 2013 and 65% (95% CI: 45-94%) in 2014.
Capture-Recapture Abundance Estimates

Assumption of population closure.— In 2013, we obtained 4-occasion encounter
histories from all N = 24 transects (n = 6 per site) for analysis. The assumption of population
closure was rejected based on the Stanley-Burnham test (x*>= 18.14, df =4, P =0.001). In
2014, we collected pellet groups from all 24 transects for 3—6 sampling occasions,
necessitating analysis based on 3 sampling occasions to make use of all 24 transects.
Although we utilized the first 3 sampling occasions when possible (21 transects), we used the
last 3 sampling occasions (4—6) for the remaining 3 transects (VV2, VV3, and VV5) because
of poor genotyping success on samples collected during the first three sampling occasions.
The assumption of population closure could not be rejected based on the Stanley-Burnham
test (2= 1.26, df =2, P = 0.534).

In both years, all sampling was completed before rifle season start dates (but
overlapped archery season in 2014). However, we began sampling earlier in the year in 2013
(June 3) than 2014 (June 23), suggesting that violation of closure in 2013 could have been due
to early sampling encompassing more births or higher “immigration” associated with the
unfinished s