Large Mammal-Vehicle Collision Hot Spot Analyses, California, USA

by

Marcel P. Huijser, PhD and James S. Begley, M.Sc.

Western Transportation Institute College of Engineering, Montana State University, P.O. Box 174250. Bozeman, MT 59717-4250

> A report prepared for the California Department of Transportation 1120 N Street, MS# 27 Sacramento, CA 95817 September 13, 2019

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the Western Transportation Institute (WTI) or Montana State University (MSU) This report does not constitute a standard, specification, or regulation.

ACKNOWLEDGEMENTS

The authors of this report would like to thank the California Department of Transportation (Caltrans) for funding this project. Special thanks are due to the following organizations and individuals who have provided data, other information, and/or reviewed drafts of the final report. Their contributions have been critical to the project's success.

- James (Jim) Henke (Caltrans)
- Lindsay Vivian (Caltrans)
- Christopher Pincetich (Caltrans)

TECHNICAL DOCUMENTATION

1. Report No.	2. Government Accession N	0.	3. Recipient's Catalog No)-			
4W6693	N/A	•	N/A	•			
4 W 0093	IV/A		IV/A				
4. Title and Subtitle			5. Report Date 13 Septem	ber 2019			
Large mammal-vehicle collision	hot snot analyses California	IISA	• •				
Large mammar-venicle comsion	i not spot anaryses, Camorina	, OSA	6. Performing Organizati	ion Codo			
			o. Feriorining Organizati	ion Coue			
7 A (In (a)			0 D. C	D N .			
7. Author(s)			8. Performing Organizati	ion Report No.			
Marcel P. Huijser & James S. Be	egley						
9. Performing Organization Name	e and Address		10. Work Unit No. (TRA	IS)			
Western Transportation Institute				/			
	•						
P.O. Box 174250							
Montana State University			11. Contract or Grant No	o. 4W6693			
Bozeman, MT 59717-4250							
,							
12. Sponsoring Agency Name and	Address		13. Type of Report and P	Period Covered			
California Department of Transp	Dortation		Research report 2 June 2	2017-			
1120 N Street, MS #27			13 September 2019				
Sacramento, CA 95817			14. Sponsoring Agency C	ode			
15. Supplementary Notes							
	11.1.1.C XVEN 1.3						
A PDF version of this report is a	ivailable from WTI's website	at www.west	terntransportationinstitute.	org			
16. Abstract							
This report documents the methor	ods and results of hot spot ana	lyses of larg	e wild mammal-vehicle co	ollisions in the			
state of California, with an empl							
with a total length of about 15,09							
decisions on the potential future	implementation of mitigation	i measures ai	med at reducing collisions	s with large wild			
mammals along highways, speci	ifically mule deer. The goals a	are to improv	e human safety, reduce un	natural deaths of			
large wild mammals (specifically							
general, regardless of their size of							
deer-vehicle crashes showed reg	gions in the state of California	where signif	icantly more deer-vehicle	crashes occur			
than expected, compared to a the	eoretical random spatial distri	bution of dee	er-vehicle crashes. In addit	tion, three			
descriptive types of Kernel dens							
analysis, per Caltrans district dec							
analyses identified the road secti							
carcasses. The hot spots were pr	rioritized based on parameters	related to hu	ıman safety, biological cor	nservation, and			
economics. Finally, the research	ers provided practical guideli	nes for the in	nplementation of mitigation	on measures and			
suggest mitigation strategies for							
			tion Statement Unrestricte	d This document			
17. Key Words California, collisio							
crossing structures, cost-benefit			through California Depar	tment of			
analysis, fences, habitat, highwa	y, hot spot, identification,	Transporta	tion and WTI-MSU.				
large mammals, mitigation, mule	e deer, overpasses, plan.	olan.					
procedures, prioritization, rankir							
underpasses, wildlife, wildlife-v							
19. Security Classification (of	20. Security Classification. (of	this page)	21. No. of Pages	22. Price			
this report) Unclassified	Unclassified		252				
			İ	1			

TABLE OF CONTENTS

1.	IN	FRODUCTION	.11
	1.1.	Background	11
	1.2.	Goals and Objectives	11
2.	DE	FINE PROBLEM AND DECIDE ON APPROACH	.14
	2.1.	Define the Problem	14
	2.2.	Decide on the Approach: Avoidance, Mitigation, or Compensation	16
3.	LA	RGE MAMMAL-VEHICLE COLLISION DATA	.18
	3.1.	Project-specific Approach	18
	3.2.	Search and Reporting Effort	19
	3.3.	Large Mammal Crash Data	19
	3.4.	Large Mammal Carcass Removal Data	25
	3.5.	Discussion	
4.	IDI	ENTIFY CRASH AND CARCASS HOT SPOTS	.31
	4.1.	Introduction	31
	4.2.	Methods	31
	4.3.	Results	34
	4.4.	Discussion	55
5.	PR	IORITIZATION DEER-VEHICLE CRASH AND MULE DEER CARCASS HOT	
SP	OTS.		.56
	5.1.	Introduction	56
	5.2.	Methods	56
	5.3.	Results	
	5.4.	Discussion	
		TIGATION RECOMMENDATIONS	
	6.1.	Introduction to Effective Mitigation Measures	
	6.2.	Practical Guidelines for Wildlife Fences	
	6.3.	Practical Guidelines for Animal Detection Systems	
	6.4.	Practical Guidelines for Wildlife Crossing Structures	
	6.5.	Mitigation Recommendations for the Top Crash and Carcass Hot Spots Per District	
7.		FERENCES	
8.		PENDIX A: STATEWIDE ANALYSIS DEER-VEHICLE CRASH HOT SPOTS	
9.		PENDIX B: ANALYSES PER DISTRICT DEER-VEHICLE CRASH HOT SPOTS1	
10	. AP	PENDIX C: ANALYSES PER DISTRICT MULE DEER CARCASSES	186

LIST OF TABLES

Table 1:	The road length within each Caltrans district that was evaluated for this project 18
Table 2:	Human fatalities because of a crash with livestock, deer, or other animal species or
	species group
Table 3:	Human injuries because of a crash with livestock, deer, or other animal species or
	species group
Table 4:	Human injuries or fatalities because of a crash with livestock, deer, or other species by
	vehicle type
Table 5:	Human injuries or fatalities because of a crash with livestock, deer, or other species by
	vehicle type
Table 6:	The number of reported deer crashes per Caltrans district per year
Table 7:	Species and number of reported carcasses in California (2000-2009)
Table 8:	The number of reported mule deer carcasses per Caltrans district per year
Table 9:	The percentage of deer-vehicle crashes compared to mule deer carcasses per Caltrans
	district
Table 10:	The categories used for maps with the hot spots based on the crash and carcass data. 34
	The "worst" hot spots based on a statewide analysis for deer-vehicle crashes in the
	entire state of California
Table 12:	The "worst" hot spots based on analyses for deer-vehicle crashes per Caltrans district.
Table 13:	The "worst" hot spots based on analyses for mule deer carcasses per Caltrans district.
	45
Table 14:	Economic thresholds (primarily based on human safety parameters) for the
	implementation of different types and combinations of mitigation measures (based on
	Huijser et al., 2009)
Table 15:	The ranking of the hot spots based on a statewide analysis for deer-vehicle crashes in
	the entire State of California.
Table 16:	The ranking of the hot spots based on analyses for deer-vehicle crashes per Caltrans
	district
Table 17:	The ranking of the hot spots based on analyses for mule deer carcasses per Caltrans
	district
Table 18:	The ranking of the hot spots based on analyses for mule deer carcasses per Caltrans
	district
Table 19:	Comparison of fences, fences in combination with wildlife crossing structures, and
	animal detection systems
Table 20.	Suggested classification system of wildlife crossing structures
	Suitability of different types of mitigation measures for selected species (for 2-3 lane
	highways [25-35 m (82-115 ft)] wide road without median)
Table 22:	The mitigation recommendations for the top hot spots based on analyses for deer-
	vehicle crashes per Caltrans district.
Table 23:	The mitigation recommendations for the top hot spots based on analyses for mule deer
	carcasses per Caltrans district

LIST OF FIGURES

Figure 1:	The 12 Caltrans districts.	13
Figure 2:	The effects of roads and traffic on wildlife.	15
Figure 3:	A three step approach: A. Avoidance, B. Mitigation, C. Compensation, D.	
	Combination of avoidance, mitigation and compensation	17
Figure 4:	Distribution of reported deer crashes per month (n=6,922 in total)	22
Figure 5:	Distribution of reported deer-vehicle crashes by hour of day (per month and for all	
	months combined).	
Figure 6:	Number of reported deer-vehicle crashes per year in the state of California	25
Figure 7:	Distribution of reported mule deer carcasses per month in California over a ten-year	
	period (2000 through 2009)	
Figure 8:	Significant hot spots (red) and cold spots (blue) based on a statewide analysis of deep	r-
	vehicle crashes.	
Figure 9:	The "worst" hot spots based on a statewide analysis for deer-vehicle crashes in the	
	entire state of California.	
	: The "worst" hot spots based on deer-vehicle crashes within each Caltrans district	
Figure 11	: The "worst" hot spots based on mule deer carcasses within each Caltrans district	41
	: The locations of the reported black bear carcasses.	
Figure 13	: The locations of the reported elk carcasses.	50
	: The locations of the reported mountain lion carcasses	
	: The locations of the reported bighorn sheep carcasses.	
	: The locations of the reported pronghorn carcasses.	
	: The locations of the reported wild boar carcasses	
Figure 18	: "Natural Landscape Block" or an "Essential Connectivity Area" from the California	
	Essential Habitat Connectivity Project (Spencer et al., 2010).	
Figure 19	: Critical habitat for threatened or endangered species (USFWS, 2019)	58
Figure 20	: Schematic representation of home ranges for two theoretical species projected on a	
	road and the distance between safe crossing opportunities (distance is equal to the	
	diameter of their home range).	79
Figure 21	: Schematic representation of home ranges and interval between safe crossing	
	opportunities.	79

EXECUTIVE SUMMARY

This report documents the methods and results of hot spot analyses of large wild mammal-vehicle collisions in the state of California, with an emphasis on mule deer. This project relates to all state managed highways in California with a total length of about 15,090 miles (24,285 km) (ignoring multiple lanes). The results of the analyses will help Caltrans make informed decisions on the potential future implementation of mitigation measures aimed at reducing collisions with large wild mammals along highways, specifically mule deer. The goals are to improve human safety, reduce unnatural deaths of large wild mammals (specifically mule deer), while also maintaining or improving habitat connectivity for wildlife in general, regardless of their size or taxonomic group. Note that in the context of this report "mitigation" refers to measures aimed at reducing impacts of roads and traffic on wildlife. In this report "mitigation" never refers to any regulatory or legal framework. However, the "mitigation measures" suggested in this report may assist Caltrans and natural resource agencies with their permitting negotiations.

Two data sources were used to identify large wild mammal-vehicle collision hot spots: crash data collected by law enforcement personnel and carcass removal data collected by road maintenance crews. Note that in this report, the term "collisions" refers to both crash data and carcass data. Deer-vehicle crashes represented 65.6% of the animal-vehicle crashes, followed by livestock (11.0%) and unidentified other species (23.4%). Most of the reported carcasses of large wild animal species (larger than a coyote) also related to mule deer (97.8%). Therefore, all further analyses were carried out with either deer-vehicle crashes or mule deer carcasses. Deer-vehicle collisions were more numerous from May through November compared to December through April, with the highest numbers occurring in October and November. Deer crashes occur mostly at night, especially around dusk (5-10 pm) and dawn (5-7 am). Overall, the number of reported deer-vehicle crashes increased significantly during the study period (2005 through 2014). These seasonal, day-night, and trend patterns are similar to other studies.

There was no evidence of inconsistent reporting effort between years or between Caltrans districts for the deer-vehicle crash data. However, there was evidence of substantial underreporting of mule deer carcasses compared to deer-vehicle crash data in all Caltrans districts except District 10. In addition, there was evidence of inconsistent reporting effort between years, between Caltrans districts, and within certain Caltrans districts for the deer-vehicle crash data. Therefore, the researchers only conducted statewide analyses for deer-vehicle crashes, and not for mule deer carcasses. Additional hot spot analyses were carried out for all Caltrans districts for both deer-vehicle crashes and mule deer carcasses.

A statewide hot spot analysis for significant concentrations of deer-vehicle crashes showed regions in the state of California where significantly more deer-vehicle crashes occur than expected compared to a theoretical random spatial distribution of deer-vehicle crashes. Regions with a significantly high concentration of deer-vehicle crashes (hot spots) include the areas around:

- Yreka/Mt Shasta.
- The coastal areas between Eureka and Fort Bragg.
- The foothills and Sierra Nevada north and south-east of Sacramento.

- The eastern slopes of the Sierra Nevada and desert around Susanville.
- The western slopes of the Sierra Nevada near Merced.
- The eastern slopes of the Sierra Nevada near Mono Lake and Mammoth Lakes.
- The coastal areas between San Francisco until just south of Carmel-by-the-Sea.
- The coastal areas near San Simeon until Santa Barbara.

Regions with a significantly low concentration of deer-vehicle crashes (cold spots) include the areas around:

- The southern portion of the Central Valley around Modesto until south of Bakersfield.
- The deserts north and east of Los Angeles and San Diego.

In addition, three descriptive types of Kernel density hot spot analyses were conducted. These analyses identify the road sections that have the "highest" concentration of deer-vehicle crashes and mule deer carcasses given the distribution of the other crashes or carcasses. The first descriptive analysis related to all deer-vehicle crash data from all highways in the state of California. This resulted in the identification of 13 hot spots spread over northern California, the Sierra Nevada, and the coastal ranges. The second type of descriptive analysis consisted of deer-vehicle crash hot spot analyses within each Caltrans district. Similarly, the third type of descriptive analysis consisted of mule deer carcass hot spot analyses within each Caltrans District.

In some districts (Caltrans Districts 2, 4, 6, 9, 10, and 12) there was at least some spatial similarity between the hot spots based on deer-vehicle crash data and mule deer carcass data. Since these two data sources are independent, this makes it more likely that there is indeed a relatively high concentration of deer-vehicle collisions along these road sections. However, there is also evidence of missing mule deer carcass data from certain areas in Districts 1 and 2.

The project data suggest that mule deer-vehicle carcasses are not only underreported compared to deer-vehicle crash data, but that there are also spatial inconsistencies in the search and reporting effort for mule deer carcasses. Practical suggestions include verification that all maintenance crews do record and submit mule deer carcasses, especially along road sections already identified as hot spots based on deer-vehicle crash data, and that these records are entered in the central database. Regular data entry and standard data summary reports can help identify areas from which mule deer carcasses are substantially below the expected number of observations.

The hot spots that were identified based on the descriptive Kernel density hot spot analyses were prioritized based on parameters related to human safety, biological conservation, and economics. The three types of parameters were weighted equally in the prioritization process. However, it is important to remember that the human safety parameters were the departure point for these analyses. This means that all the hot spots, by definition, had a relatively high number and concentration of deer-vehicle crashes or mule deer carcasses already.

The economic parameter expressed the number of deer-vehicle crashes or mule deer carcasses in costs per mile per year related to the deer collisions. Only some of the hot spots met or exceeded the economic thresholds for the implementation of wildlife fences in combination with wildlife

crossing structures or animal detection systems. However, the values of the economic parameter for the different hot spots should not be compared to the thresholds as if it was a litmus test for implementing or not implementing a mitigation project. The thresholds are primarily based on human safety parameters and exclude passive values associated with biological conservation; they are very conservative by nature. In addition, there is evidence of severe underreporting of mule deer carcasses. While the researchers strongly advise to use the cost-benefit analyses as an important decision support tool, they also urge users to recognize that these analyses are only one of the factors that should be considered in the decision-making process.

The researchers selected the highest-ranking deer-vehicle crash or mule deer hot spots within each Caltrans district and formulated mitigation recommendations. The researchers aimed to identify the five worst hot spots in each district. However, in some districts there were fewer hot spots present (less than five), and in some other districts there were more than five hot spots that met the requirements to be indicated as a hot spot.

While there are dozens of different types and combinations of mitigation measures, there are only two types of mitigation packages that can substantially reduce collisions with large wild mammals:

- 1. Wildlife fences in combination with wildlife crossing structures (underpasses or overpasses);
- 2. Animal detection systems, either as a stand-alone measure or at a gap in the fence.

Fences in combination with wildlife crossing structures address both objectives; collision reduction and providing safe crossing opportunities for wildlife. However, animal detection systems do not make it any easier for animals to cross a road. To get to the other side of the highway, animals still must cross an open area with unnatural substrate and avoid the vehicles that drive on the road. Therefore, animal detection systems should only be considered if reducing collisions with large mammals is the only objective. Animal detection systems should not be considered if increasing habitat connectivity is also an objective. The researchers provide practical guidelines for the implementation of mitigation measures and suggest mitigation strategies for the highest-ranking hot spots in each Caltrans district.

Practical guidelines for the implementation of mitigation measures, especially wildlife fences in combination with large mammal crossing structures:

1. Focus on hot spots with a relatively high number of collisions first. If there are less than 10 reported deer-vehicle crashes or less than 10 reported mule deer carcasses in a hot spot, implementation of mitigation measures is relatively risky compared to sites that have greater collision numbers. The identification of hot spots with low numbers is less robust than the identification of hot spots with higher numbers. The authors of this report suggest minimizing the risk of investing in mitigation measures by focusing on hot spots that are likely to be a substantial and consistent hot spot rather than a less important hot spot or a hot spot that may have been wrongly identified because of variations in the number of collisions.

- 2. Interview law enforcement personnel and road maintenance personnel in the first phase of exploring the potential implementation of mitigation measures. Get confirmation that it is indeed a "bad spot" for deer-vehicle collisions, and get confirmation about the exact road section (start and end points).
- 3. Some hot spots appear particularly difficult or costly to mitigate. The presence of 8-12 lanes of traffic, frontage roads, intersections, private lands, residential and commercial development, etc. all make it more challenging to effectively mitigate a hot spot. These types of challenges are "ignored" in the ranking of the hot spots. However, the challenges of each hot spot should be carefully weighed when proceeding with the planning, design, and implementation of mitigation measures.
- 4. Carefully evaluate what species other than mule deer may require mitigation for direct road mortality or the barrier effect along the road section that is considered for mitigation. Consult spatial and biological databases, interview representatives from natural resource management agencies, interview people with local knowledge and experience. Modify or add to the list of target species as it may well influence the design of the mitigation measures.
- 5. In general, the first choice or recommendation for mitigating a hot spot is a wildlife fence in combination with designated wildlife crossing structures. Implement large mammal fences (2.4 m high (8 ft)) along the full length of a hot spot and buffer zones that span an additional 1,600 m (1.0 mile) from each end of the hot spot. As a general principle, provide a crossing structure that is suitable for mule deer (at least 7-8 m (23-26 ft) wide, 4-5 m (13-16 ft) high) once every 2,400 m (1.49 mile) in the fenced road section. With reduced ambition levels (i.e. address only collisions with large mammals, do not provide safe crossing opportunities for wildlife) animal detection systems are suggested as a second choice for road sections with less than 5,000 vehicles per day.
- 6. If there were existing structures in a hot spot, identified through satellite images, these were noted in the tables. However, structures primarily designed for motorized vehicles were not listed. Nonetheless, very long bridges with only small or unpaved roads were included as an existing structure that may be adapted to also allow for wildlife use. In addition to connecting these structures to wildlife fences, the structures may need some modifications to make them suitable for wildlife use. These modifications will likely vary between the structures, and some structures may not need any modifications.
- 7. In general, structures for mule deer should be considered about every 2,400 m (1.49 mile). This means that long hot spots may need multiple crossing structures. These structures can be any combination of existing structures originally built for other purposes and designated wildlife crossing structures. Fences may extend into adjacent buffer zones, and there may be additional existing structures in those areas. Tying these existing structures into the wildlife fence and allowing potential wildlife use through these structures makes sense, as long as it is compatible with the primary use of a structure and the land use in the areas surrounding the structure.

1. INTRODUCTION

1.1. Background

Wildlife-vehicle collisions affect human safety, property (damage), and wildlife. The total number of large mammal–vehicle collisions has been estimated at one to two million in the United States annually (Conover et al., 1995; Huijser et al., 2009). These collisions have been estimated to cause 211 human fatalities, 29,000 human injuries, and over one billion US dollars in property damage annually (Conover et al., 1995). More recent estimates that include costs associated with human injuries and human fatalities estimate the yearly costs associated with wildlife-vehicle collisions between 6 and 12 billion US dollars (Huijser et al., 2009). In most cases, the animals die immediately or shortly after the collision (Allen & McCullough, 1976). In some cases, it is not just the individual animals that suffer. Road mortality may also affect some species on the population level (e.g., van der Zee et al., 1992; Huijser & Bergers, 2000), and some species may even be faced with a serious reduction in population survival probability as a result of road mortality, habitat fragmentation, and other negative effects associated with roads and traffic (Proctor, 2003; Huijser et al., 2008). In addition, some species also represent a monetary value that is lost once an individual animal dies (Romin & Bissonette, 1996; Conover, 1997).

The highways in the state of California are important for local, state and interstate travel. However, the frequency of large wild mammal-vehicle collisions, specifically with mule deer (or black-tailed deer) (*Odocoileus hemionus*), was considered high enough for Caltrans to explore procedures and tools to identify and prioritize large wild mammal-vehicle collision hot spots, with an emphasis on mule deer. The authors of this report identified large wild mammal-vehicle collision hot spots, and then prioritized these hot spots based on human safety, biological conservation, and cost-benefit analyses. The authors of this report then formulated mitigation measures aimed at reducing large wild mammal-vehicle collisions and at providing safe crossing opportunities for a wide range of wildlife species, regardless of their size or taxonomic group. Note that in the context of this report "mitigation" refers to measures aimed at reducing impacts from roads and traffic on wildlife. In this report "mitigation" never refers to any regulatory or legal framework. However, the "mitigation measures" suggested in this report may assist Caltrans and natural resource agencies with their permitting negotiations.

1.2. Goals and Objectives

This project aims to conduct a statewide hot spot analysis of large wild mammal-vehicle collisions in the state of California, with an emphasis on mule deer. This project relates to all state managed highways in California. The total length of these highways is estimated at about 15,090 miles (24,285 km) (total length of the highways, ignoring multiple lanes). The results of the analyses will help Caltrans make informed decisions on the potential future implementation of mitigation measures aimed at reducing collisions with large wild mammals along highways, specifically mule deer. The goals are to improve human safety, reduce unnatural deaths of large wild mammals (specifically mule deer), while also maintaining or improving habitat connectivity for wildlife in general, regardless of their size or taxonomic group. This project is based on the

methods developed from a pilot study conducted in Caltrans District 10 titled "Procedures and Tools for Wildlife-Vehicle Collision Hotspot Analyses; Using Caltrans District 10 as an Example" (Huijser et al., 2014).

The objectives for the current project are to:

1. Provide a sound methodology to identify highway sections in the state of California that have the highest concentration of collisions with large wild mammals, namely mule deer, in specific ("hot spots").

Conduct two types of analyses:

- a. Statewide analysis that identifies and prioritizes the "worst" hot spots in the state.
- b. Analyses per Caltrans district that identify and prioritize the "worst" hot spots within each of the 12 Caltrans districts (Figure 1).
- 2. Prioritize the hot spots based on:
 - a. Human safety data based on large wild mammal-vehicle and mule deer crash data, and carcass removal data.
 - b. Biological conservation data derived from the California Essential Habitat Connectivity analyses (Spencer et al., 2010) and critical habitat data (USFWS, 2019).
 - c. Cost-benefit data on the cost of wildlife-vehicle collisions and the implementation of mitigation measures aimed at reducing large wild mammal-vehicle collisions and providing connectivity for a wide range of species, regardless of their size or taxonomic group. The measures include wildlife fences combined with wildlife crossing structures (overpasses and underpasses) and animal detection systems. These mitigation measures do (wildlife fences combined with crossing structures) or can (animal detection systems) reduce collisions with large mammals substantially (i.e. >80%). However, animal detection systems should be considered experimental and do not address the barrier effect of highways. These systems should still be considered experimental because many systems have challenges with reliably detecting the target species, and many projects fail because of technological, management, maintenance, or financial problems. Furthermore, animal detection systems do not address the barrier effect of highways as the animals are still required to cross an open area with unnatural substrate (pavement) and confront the disturbance and danger posed by traffic.

The outcome of the prioritization process can be used to assist Caltrans with funding decisions and prioritizing transportation investments in the State Highway Operations and Protection Plan within each district.

The procedures, tools, and outcomes of this project should be aligned with the Caltrans 2015-2020 Strategic Plan and goals related to Safety and Sustainability.

Figure 1: The location of the 12 Caltrans districts.

2. DEFINE PROBLEM AND DECIDE ON APPROACH

2.1. Define the Problem

Implementation of measures aimed at reducing wildlife-vehicle collisions requires knowledge about the locations of these collisions. Along most roads in North America there are two types of wildlife-vehicle collision data that can help identify the "worst" road sections:

- **Crash data:** These data are typically collected by law enforcement personnel. For a crash to be entered into the database there is often a threshold (e.g. the minimum estimated vehicle repair cost is at least US \$1,000 and/or there are human injuries and human fatalities) (Huijser et al., 2007).
- Carcass data: These data are typically collected by road maintenance crews when they remove carcasses of large mammals that are on the road or that are very visible from the road in the right-of-way and that are an immediate safety hazard or a distraction to drivers (Huijser et al., 2007). Note that carcass data are sometimes also collected or recorded by others, e.g. by personnel from natural resource management agencies, researchers, or the general public.

Both types of collision data tend to relate to large mammals only; medium-sized and small-sized mammals and other species groups such as amphibians, reptiles and birds are usually inconsistently recorded or not recorded at all (Huijser et al., 2007). Furthermore, crash data typically represent only a fraction (14-50%) of the carcass data, even if both data sets relate to large mammals only (Tardif and Associates Inc., 2003; Riley & Marcoux, 2006; Donaldson & Lafon, 2008). Finally, the carcass data are far from complete as well; animals that are not very visible from the road in the right-of-way may not be removed and do not get recorded. Wounded animals that make it beyond the right-of-way fence before they die are also usually not recorded at all.

If only wildlife-vehicle collision data are used to identify and prioritize locations along highways that that may require wildlife mitigation measures, then the concern is typically primarily with human safety and reducing collisions with common large wild mammals. Depending on the region in North America, the most common large wild mammals and the most frequently hit large wild mammal species include ungulates such as white-tailed deer (*Odocoileus virginianus*), mule deer (*Odocoileus hemionus*), elk (*Cervus canadensis*) and moose (*Alces americanus*).

If the concern is with direct road mortality for species or species groups other than common large wild mammals, then data sources other than crash data and carcass removal data may be required. A specific road-kill monitoring program may have to be developed as roadkill data on small and rare species are typically not available. Depending on the exact goals of the project and the associated requirements such data may be collected by personnel from natural resource management agencies, researchers or the public. Small species may require monitoring with slow speed, perhaps even traveling on foot (e.g. Teixeira et al., 2013). Rare species are not only rarely encountered, but the carcasses may be removed (legally or illegally) by others before agency personnel, researchers, or citizen scientists come by. If the interest is to reduce road mortality of

rare species, it becomes increasingly likely that reducing roadkill is not only or not primarily about human safety; it becomes more about biological conservation. In this context, it may be a good strategy to not only focus on current road mortality hot spots, but to also address historic roadkill hot spots that may have acted as a population sink in the past and where the population is now so depleted that it no longer shows up as a hot spot for collisions (Teixeira et al., 2017). Therefore, sites that require mitigation for rare species may need to be primarily based on suitable habitat or corridors instead of carcass and crash data, which are inherently rare.

While there is much emphasis on mitigating for large mammal-vehicle collisions in North America, crashes, dead animals, and associated costs and risks to humans are not the only reason mitigation for wildlife along highways may be considered (Van der Ree et al., 2015). The authors of this report distinguish five different categories of effects of roads and traffic on wildlife (Figure 2):

- Habitat loss: e.g., the paved road surface, heavily altered environment through the road bed with non-native substrate, and seeded species and mowing in the clear zone.
- Direct wildlife road mortality as a result of collisions with vehicles.
- Barrier to wildlife movements: e.g., animals do not cross the road as often as they would have crossed natural terrain and only a portion of the crossing attempts is successful.
- Decrease in habitat quality in a zone adjacent to the road: e.g., noise and light disturbance, air and water pollution, increased access to the areas adjacent to the highways for humans.
- Right-of-way habitat and corridor: Depending on the surrounding landscape the right-of-way can promote the spread of non-native or invasive species (surrounding landscape largely natural or semi-natural) or it can be a refugium for native species (surrounding landscape heavily impacted by humans).

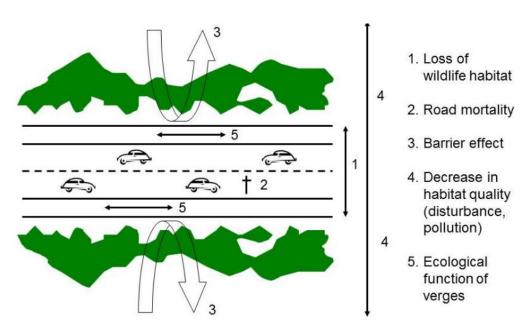


Figure 2: The effects of roads and traffic on wildlife.

If mitigation is required for habitat loss, barrier effects, a decrease in habitat quality in a zone adjacent to the road, or the ecological functioning of rights-of-way, other types of data are needed than wildlife-vehicle collision data. Examples of such data are data on the quantity and quality of the habitat impacted, animal movement data, data on noise or chemical pollutants, and the presence of non-native invasive species.

2.2. Decide on the Approach: Avoidance, Mitigation, or Compensation

While mitigation (reducing the severity of an impact) is common, avoidance is better and should generally be considered first (Cuperus et al., 1999). For example, the negative effects of roads and traffic may be avoided if a road is not constructed, or the most severe negative effects may be avoided by re-routing away from the most sensitive areas (Figure 3). If the effects cannot be avoided, mitigation is a logical second step. Mitigation is typically done in the road-effect zone (Figure 3) and may include measures aimed at reducing wildlife-vehicle collisions and reducing the barrier effect (e.g., through providing for safe wildlife crossing opportunities) (Huijser et al., 2008; Clevenger & Huijser, 2011). However, mitigation may not always be possible, or the mitigation may not be sufficient. In such situations, a third approach may be considered: compensation or mitigation off-site. Compensation may include increasing the size existing habitat patches, creating new habitat patches, or improving the connectivity between the habitat patches that would allow for larger, more connected, and more viable network populations. Finally, in some situations, a combination of avoidance, mitigation, and compensation may be implemented.

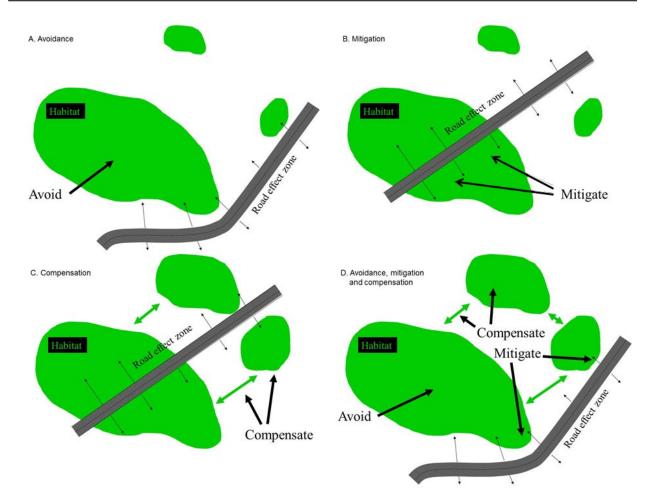


Figure 3: A three step approach: A. Avoidance, B. Mitigation, C. Compensation, D. Combination of avoidance, mitigation and compensation.

3. LARGE MAMMAL-VEHICLE COLLISION DATA

3.1. Project-specific Approach

This chapter describes the large mammal-vehicle crash data and carcass removal data used to identify and prioritize wildlife-vehicle collision hot spots. The authors evaluated large mammal-vehicle collision data along 15,090 miles (24,285 km), spread over all 12 Caltrans districts (Table 1).

Table 1: The road length within each Caltrans district that was evaluated for this project.

District	Road length (miles)
1	942.65
2	1,724.85
3	1,497.20
4	1,410.70
5	1,154.65
6	1,794.75
7	1,128.35
8	1,827.05
9	958.95
10	1,323.55
11	1,050.70
12	276.80
Total	15,090.20

The researchers used two datasets to identify large mammals-vehicle collision hot spots:

- Large mammal-vehicle crash data recorded by California Highway Patrol (Traffic Accident Surveillance and Analysis System data ("TASAS")).
- Carcass removal data recorded by Caltrans maintenance personnel (Animal Vehicle Collision data ("AVC") later replaced by Integrated Maintenance Management System data ("IMMS")).

These two data sets are described and summarized in further detail in the following sections. Note that in this report the term "collisions" refer to both crashes and carcasses.

3.2. Search and Reporting Effort

For the data analyses described in this report (trend over time, hot spot analyses) the researchers assumed that the search and reporting effort between the different years, districts and road sections within a district were consistent. If the search and reporting effort varies between years, it may not be appropriate to use the data to investigate if there are changes (increase or decrease) in the number of wildlife-vehicle collisions over the years. If the search and reporting effort varies between districts or road sections within a district, it may not be appropriate to use the data to investigate if there are concentrations of wildlife-vehicle collisions along certain road sections either on a statewide level or on a district level.

While a consistent search and reporting effort is essential for analyzing temporal and spatial trends, it is not assumed that every wildlife-vehicle collision (e.g. deer-vehicle crash or mule deer carcass) ends up in the crash database or the carcass removal database. Consistent search and reporting effort can relate to only a fraction of the actual number of collisions. What matters is that a crash or carcass has similar likelihood of being recorded in different years (for temporal analyses to investigate if the deer-vehicle collisions may have increased or decreased over the years) and similar likelihood of being recorded in different districts or on different road sections within a district (for spatial analyses to investigate if there are concentrations of deer-vehicle collisions on certain road sections ("hot spots")).

The search and reporting effort for crash data is typically lower than for carcass removal data (Tardif and Associates Inc., 2003; Riley & Marcoux, 2006; Donaldson & Lafon, 2008). For a crash to be included in the crash database in the state of California, there must be human injuries or human fatalities associated with the crash or the estimated damage to property has to be at least US \$500 (Caltrans, 2013). However, depending on the severity of a reported crash, other tasks, and the distance to the crash site, there is not always sufficient law enforcement personnel available to respond and record the crash. For a carcass to be included in the carcass removal database, Caltrans personnel must have gone out and removed a carcass. The presence of a carcass is reported to Caltrans maintenance crews in the following manners (Personal communication Caltrans maintenance personnel in Pinegrove and Jamestown, Caltrans District 10):

- Telephone call by the public.
- Reports from Caltrans personnel commuting to and from work.
- Requests from law enforcement personnel/dispatch.
- Observations by Caltrans maintenance personnel on route to or from an assigned task.
- Observations by Caltrans maintenance personnel conducting regular road inspections.

3.3. Large Mammal Crash Data

The large mammal crash data related to the period 1 January 2005 through 31 December 2014 (the most recent 10 years data were available for). There were 10,552 reported crashes with either livestock, deer, or other animals (Table 2). There were 25 crashes with 28 human fatalities, mostly with deer (Table 2). There were 1,351 crashes with 1,617 human injuries, also mostly

with deer (Table 3). The probability that a deer-vehicle crash results in at least one human injury was 12.22% (847 out of 6,922). For human fatalities this was 0.19% (13 out of 6,922).

Table 2: Human fatalities because of a crash with livestock, deer, or other animal species or species group.

		Cras	hes (n)	
Human fatalities in an individual crash (n)	Livestock	Deer	Other species	Total
0	1,156	6,909	2,462	10,527
1	6	12	4	22
2	0	1	2	3
Total crashes (n)	1,162	6,922	2,468	10,552
Total crashes (% of total)	11.01	65.60	23.39	100.00
Total crashes with human				
fatalities (n)	6	13	6	25
Total crashes with human				
fatalities (% of total)	24.00	52.00	24.00	100.00

Table 3: Human injuries because of a crash with livestock, deer, or other animal species or species group.

		Cr	ashes	
Human injuries in an			Other	
individual crash (n)	Livestock	Deer	species	Total
0	954	6,075	2,172	9,201
1	149	736	240	1125
2	49	102	48	199
3	3	7	7	17
4	6	1	0	7
5	1	1	1	3
Total crashes (n)	1,162	6,922	2,468	10,552
Total crashes (% of total)	11.01	65.60	23.39	100.00
Total crashes with human				
injuries (n)	208	847	296	1,351
Total crashes with human				
injuries (% of total)	15.40	62.69	21.91	100.00

Most of the crashes were with passenger cars (7,764 out of 10,552 crashes) (Table 4). However, the percentage of crashes that resulted in at least one human injury or human fatality was 5.72% for pickup trucks (vehicle type D), 9.66% for passenger cars (vehicle type A), and 91.13% for motorcycles (vehicle type C) (Table 4). For passenger cars, the percentage of human injuries or human fatalities was higher with livestock crashes (22.36%) compared to crashes with "deer" or other species (Table 5). The same applied to pickup trucks (9.88%), but for motorcyclists the percentage of human injuries or human fatalities was at least 90% regardless of the species group involved (Table 5).

Table 4: Human injuries or fatalities because of a crash with livestock, deer, or other species by vehicle type.

Table 4: Human injuries or fatalities because	Crasho	es with les or fat	numan	Crashes with at least one human injury		
****		or fatality				
Vehicle type	None	≥1	Total	(%)		
A-Passenger car / station wagon	7,014	750	7,764	9.66		
B-Passenger car with trailer	12	1	13	7.69		
C-Motorcycle	47	483	530	91.13		
D-Pickup / panel truck	1,253	76	1,329	5.72		
E-Pickup / panel truck with trailer	53	5	58	8.62		
F-Truck / truck tractor	48	4	52	7.69		
G-Truck / tractor and 1 trailer	204	8	212	3.77		
H-School bus	20	1	21	4.76		
I-Other bus	22	1	23	4.35		
J-Emergency vehicle	404	28	432	6.48		
L-Bicycle	0	3	3	100.00		
M-Other-motor vehicle	43	1	44	2.27		
N-Other non-motor vehicle	1	0	1	0.00		
2-Truck / tractor & 2 trailers	32	2	34	5.88		
U-Pedestrian	1	6	7	85.71		
Unknown	27	1	28	3.57		
V-Dismount pedestrian	1	0	1	0.00		

Species group	Human injuries or fatalities (n)	A-Passenger car / station wagon	C- Motorcycle	D-Pickup / panel truck
	`,	-	•	
Livestock	None	552	0	228
	≥1	159	14	25
	≥1 (%)	22.36	100.00	9.88
Deer	None	4,703	37	820
	≥1	410	378	38
	≥1 (%)	8.02	91.08	4.43
Other species	None	1,759	10	205
	≥1	181	91	13
	≥1 (%)	9.33	90.10	5.96

For the following sections and chapters of this report that are based on crash data, we selected deer-vehicle crashes (i.e. we excluded "livestock" and "other species"). Deer-vehicle crashes were more numerous from May through November compared to December through April, with the highest numbers occurring in October and November (Figure 4).

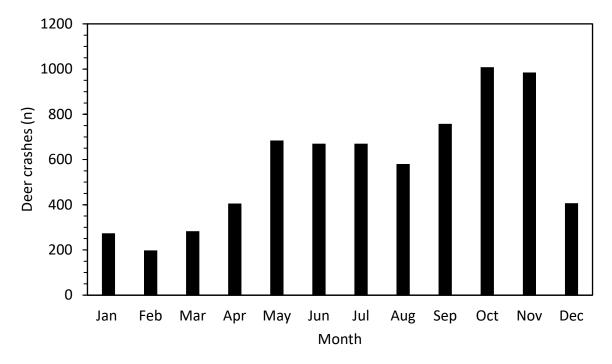


Figure 4: Distribution of reported deer crashes per month (n=6,922 in total).

Deer-vehicle crashes occur mostly at night, especially around dusk (5-10 pm) and dawn (5-7 am) (Figure 5). There is a noticeable effect of shorter days in the winter, and dusk occurring earlier at the end of the afternoon and early evening. Deer-vehicle crashes peak around 5-7 pm in November and December, compared to around 8-10 pm in June and July. The seasonal effect on the hour of day is less pronounced for the peak in the morning hours.

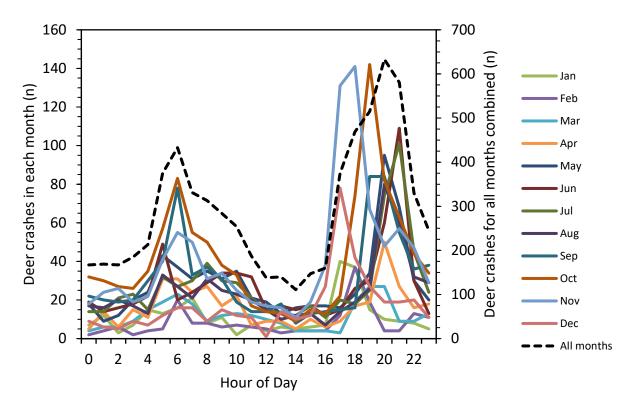


Figure 5: Distribution of reported deer-vehicle crashes by hour of day (per month and for all months combined).

The number of deer-vehicle crashes within each district per year was relatively consistent (Table 6). This suggests that, within each district, the search and reporting effort for deer-vehicle crashes was relatively constant throughout the data collection period (2005 through 2014), and that hot spot analyses within each district are justified. The lowest number of records in a district (total for 10 years) was 103 (District 12), which the authors of this report considered high enough for a meaningful hot spot analysis within that district. The relatively constant search and reporting effort within each of the districts also means that the individual districts had a relatively consistent share of the total number of deer-vehicle crashes in the entire state of California, and that the total number of deer-vehicle collisions in the entire state is also relatively constant (Table 6). This suggests that statewide hot spot analyses are also justified. Nonetheless, it is still possible that the search and reporting effort varied between the 12 districts. However, investigating such potential differences in search and reporting effort between the individual districts is complicated and confounded by likely differences between the districts in deer population size and movements, and traffic volume, even when the number of deer-vehicle crashes would be corrected for the total road length within each district.

Table 6: The number of reported deer crashes per Caltrans district per year.

District	Total (n)	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
1	790	77	64	70	78	75	66	72	94	103	91
2	1,366	110	115	155	140	139	121	150	141	146	149
3	913	74	69	74	93	100	92	94	90	114	113
4	789	93	82	91	92	80	75	75	63	75	63
5	1,104	90	70	105	108	108	114	139	128	148	94
6	272	38	33	35	28	25	22	23	24	27	17
7	205	18	18	10	21	13	12	25	33	31	24
8	129	4	10	9	19	7	13	10	21	15	21
9	540	35	32	33	38	38	54	74	70	83	83
10	568	60	66	59	76	65	44	42	59	60	37
11	143	7	8	10	14	16	11	16	25	14	22
12	103	9	17	10	12	6	12	7	12	14	4
Total (n)	6,922	615	584	661	719	672	636	727	760	830	718

Because there was no evidence of inconsistent reporting effort between years or between Caltrans districts, a regression analysis was conducted to investigate potential increases or decreases in the total number of reported deer-vehicle crashes in the state of California in the period 2005 through 2014 (Figure 6). The regression analysis showed that the slope significantly deviated from zero (p=0.007); the number of reported deer-vehicle crashes increased significantly in this period (Figure 6). On average, the increase in the number of reported deer-vehicle crashes was 18.98 per year.

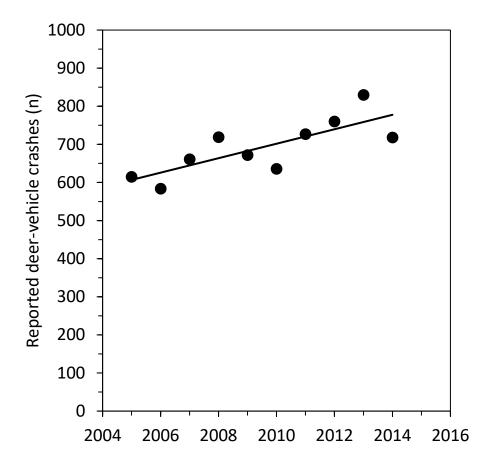


Figure 6: Number of reported deer-vehicle crashes per year in the state of California. Formula for the trend line: Crash = $-37451.76 + (18.98 \times Year)$; R2=0.614, p=0.007, slope 18.98).

3.4. Large Mammal Carcass Removal Data

The carcass removal data related to the period 1 January 2000 through 31 December 2009 (the most recent 10 years data were available for). The carcass removal data used for this project were based on the following data sources and periods:

- "AVC" data:1 January 2000 through 31 December 2005.
- "IMMS" data: 1 January 2006 through 31 December 2009.

The researchers edited the database so that each individual carcass corresponds to a record in the database (rather than one record relating to multiple carcasses). In addition, the researchers made the species descriptions as consistent and precise as possible. Most of the reported carcasses (66.8%) related to mule deer (Table 7). However, mule deer represented 97.8% of all large mammal carcasses of species larger in size than a coyote (Table 7). Other large mammals included black bear, elk, mountain lion, wild boar, bighorn sheep, and pronghorn (all <1%) (Table 7).

Large mammal species of possible conservation concern to Caltrans include elk, mountain lion, and bighorn sheep (Pers. comm. Jim Henke, Caltrans). However, given the low numbers in the

carcass removal database for these species, hot spot analyses for these individual species are unlikely to accurately identify road sections where these species are hit most frequently. Based on the species descriptions by road maintenance personnel that recorded the carcasses, it is not certain that there were any federal or state threatened or endangered species reported. However, some of the species descriptions did not identify carcasses to the species level (e.g. "Fox"), or subspecies level (e.g. "Bighorn sheep" or "Kit fox") and it is still possible that threatened or endangered species or subspecies were encountered and removed by road maintenance personnel (e.g. Peninsular bighorn sheep (*Ovis canadensis nelsoni*), Sierra Nevada bighorn sheep (*Ovis canadensis sierra*), Sierra Nevada red fox (*Vulpes vulpes necator*), or San Joaquin kit fox (*Vulpes macrotis mutica*). However, most of the threatened and endangered mammal species in California are too small to have been detected by road maintenance personnel from a moving vehicle (Teixeira et al., 2013).

Table 7: Species and number of reported carcasses in California (2000-2009).

Species description	Total	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Species description	1 Otal	2000	2001	2002	2003	2004	2003	2000	2007	2000	2007
Mule deer (Odocoileus hemionus)	3,424	357	123	833	487	462	142	155	287	321	257
Unknown	743	0	0	7	0	0	0	201	207	176	152
Raccoon (Procyon lotor)	315	24	5	13	17	18	9	14	37	104	74
Coyote (Canis latrans)	211	28	2	25	29	29	12	6	11	18	51
Virginia opossum (Didelphis virginiana)	99	14	2	17	16	8	14	3	6	13	6
Skunk sp.	88	10	0	4	5	3	8	6	16	21	15
Bird	65	8	1	7	3	8	34	0	3	1	
Black bear (<i>Ursus americanus</i>)	50	0	0	20	0	7	0	2	13	5	3
Fox sp.	22	6	0	0	2	1	0	1	6	4	2
Rabbit sp.	21	0	0	0	0	0	0	2	9	8	2
Bobcat (<i>Lynx rufus</i>)	20	5	0	2	5	2	1	0	1	1	3
Rabbit or hare sp.	18	6	0	3	2	2	5	0	0	0	0
Elk (Cervus canadensis)	17	0	0	2	1	5	0	0	3	4	2
Squirrel sp.	5	1	0	1	0	0	2	0	0	1	0
Gray fox (<i>Urocyon cinereoargenteus</i>)	4	2	1	0	0	0	0	0	1	0	0
Mammal sp.	4	0	0	0	1	2	1	0	0	0	0
Mountain lion (<i>Puma concolor</i>)	4	0	1	2	0	0	0	0	0	1	0
American badger (Taxidea taxus)	3	0	0	0	0	0	0	0	0	0	3
Red fox (Vulpes vulpes)	3	0	0	0	0	0	0	0	0	2	1
Wild boar (Sus scrofa)	3	0	0	0	0	0	0	0	0	0	3
Jack rabbit (<i>Lepus</i> sp.)	2	0	0	0	0	0	0	0	1	1	0
Bighorn sheep (Ovis canadensis)	1	0	0	0	0	0	0	0	1	0	0
Kit fox (Vulpes macrotis)	1	1	0	0	0	0	0	0	0	0	0
River otter (Lontra canadensis)	1	0	0	0	0	0	0	0	0	1	0
Pronghorn (Antilocapra americana)	1	0	0	1	0	0	0	0	0	0	0
Total (n)	5,125	462	135	937	568	547	228	390	602	682	574

For the following sections and chapters of this report that are based on carcass removal data, we selected mule deer carcass removal data only. Mule deer carcasses were more numerous from May through November compared to December through April, with the highest numbers occurring in September through November, and in May (Figure 7).

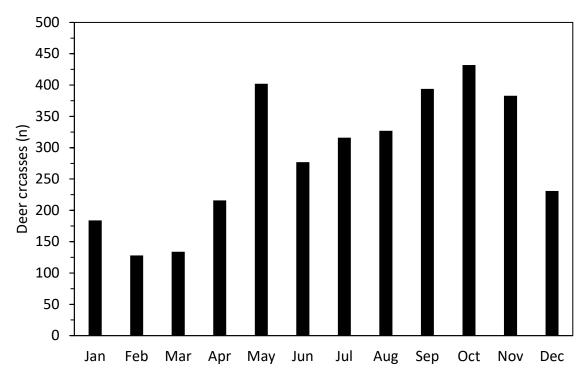


Figure 7: Distribution of reported mule deer carcasses per month in California over a ten-year period (2000 through 2009).

Mule deer carcasses were not reported in some years in some of the Caltrans districts (Table 8). For Districts 1 through 8, reporting was mostly restricted to 2006-2009. For Districts 9 and 12, the reporting was mostly restricted to 2000-2005. District 10 reported consistently throughout the data collection period, and District 11 reported very few observations with no reports in most of the years (Table 8). The data illustrate that the search and reporting effort for mule deer carcasses was inconsistent between years in all but one of the districts. Some districts even had no reported mule deer carcasses at all in some years.

Because of the temporal and spatial inconsistencies in the carcass data, trend analyses for the number of carcasses reported per year and statewide hot spot analyses are not meaningful for the 10-year dataset, nor for a selection out of these 10 years. The hot spot analyses within each district are still meaningful though, assuming that the search and reporting effort only varied between years, but not spatially within each district. However, it is prudent to set a minimum sample size for each district. For the purposes of this report, the minimum sample size (total number of mule deer carcasses over 10 years) was set at 50 records. This means that mule deer carcass hot spot analyses were conducted for Districts 1, 2, 4, 6, 9, 10, and 12, and not for Districts 3, 5, 7, 8, and 11 (Table 8). The authors of this report suggest improving efforts by Caltrans personnel to more consistently report mule deer carcasses with similar search and reporting effort between years as well as between districts.

Table 8: The number of reported mule deer carcasses per Caltrans district per year.

District	Total (n)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1	230	15	10	18	0	0	0	41	71	37	38
2	202	0	0	175	0	0	0	0	3	14	10
3	9	0	0	0	0	0	0	1	3	1	4
4	367	0	0	0	0	0	0	40	83	135	109
5	32	0	0	0	0	0	0	11	12	6	3
6	58	0	0	2	1	0	0	4	14	22	15
7	14	0	0	0	0	0	0	6	1	3	4
8	5	0	0	0	0	0	0	2	2	0	1
9	670	95	35	140	127	157	115	0	1	0	0
10	1,746	222	73	487	347	290	13	48	95	99	72
11	3	1	0	0	0	0	0	0	1	1	0
12	88	24	5	11	12	15	14	2	1	3	1
Total (n)	3,424	357	123	833	487	462	142	155	287	321	257

Wildlife-vehicle crash data typically represent only a fraction (14-50%) of the wildlife carcass data, even if both data sets relate to large mammals only (Tardif and Associates Inc., 2003; Riley & Marcoux, 2006; Donaldson & Lafon, 2008). Because of the suspected underreporting of mule deer carcasses in many of the Caltrans districts (see Table 8), the researchers compared the deervehicle crash number and the mule deer carcass number for each of the 12 Caltrans districts (Table 9). Note that both the crash (2005-2014) and carcass data (2000-2009) related to 10 years, but that only a portion of the years overlapped (2005-2009). Only one of the districts was within the expected range (14-50%); all other districts had more deer-vehicle crash records than mule deer carcasses, the opposite of what is considered normal, and far outside the expected range. This is further evidence of severe underreporting of mule deer carcasses in general, and in 11 out of the 12 Caltrans districts.

	Deer-			
	vehicle	Mule deer	% of crash data	In or out of
	crashes (n)	carcasses (n)	compared to	expected
District	2005-2014	2000-2009	carcass data	range
1	790	230	343.48	Out
2	1,366	202	676.24	Out
3	913	9	10,144.44	Out
4	789	367	214.99	Out
5	1,104	32	3,450.00	Out
6	272	58	468.97	Out
7	205	14	1,464.29	Out
8	129	5	2,580.00	Out
9	540	670	80.60	Out
10	568	1,746	32.53	In
11	143	3	4,766.67	Out
12	103	88	117.05	Out
Total	6,922	3,424	202.16	Out

Table 9: The percentage of deer-vehicle crashes compared to mule deer carcasses per Caltrans district.

3.5. Discussion

The probability of human injuries as a result of a crash with a deer was 12.22% (847 out of 6,922 crashes). This was somewhat higher than the range reported in a review by Huijser et al. (2009): range 2.8-9.7%. The probability of human fatalities as a result of a crash with a deer was 0.19% (13 out of 6,922 crashes). This was within the range reported in a review by Huijser et al. (2009): range 0.009-0.05%. Motorcyclists were particularly vulnerable to human injuries or human fatalities as a result of a collision with a deer; 91.13% compared to under 10% for other types of motor vehicles. This is also consistent with other studies (e.g. Abra et al., 2019)

Deer-vehicle collisions (both deer crash and mule deer carcass data) were more numerous from May through November compared to December through April, with the highest numbers occurring in October and November. These deer crashes occur mostly at night, especially around dusk (5-10 pm) and dawn (5-7 am). Finally, the number of reported deer-vehicle crashes increased significantly in the study period. Note that the estimated deer population in California decreased rather than increased over this time period (CDFW, 2018). These seasonal, day-night, and trend patterns are similar to other studies (e.g. Huijser et al., 2008).

There was no evidence of inconsistent reporting effort between years or between Caltrans districts for the deer-vehicle crash data collected by the California Highway Patrol (CHP). However, there was evidence of substantial underreporting of mule deer carcasses compared to deer-vehicle crash data in all Caltrans districts except District 10.

4. IDENTIFY CRASH AND CARCASS HOT SPOTS

4.1. Introduction

This chapter contains the procedures used to identify large mammal-vehicle collision hot spots. The hot spot identification process results in hot spots that are primarily based on human safety data. This is important to recognize, as an alternative process that would identify hot spots based on – for example – biological conservation parameters, may result in the identification of very different road segments with different road lengths because it would probably be based on different species and habitat. This is not necessarily a problem, but it is important to recognize that the "departure point" for the identification process for the hot spots is based on human safety concerns and collisions with large wild mammals rather than anything else.

Based on the data exploration in Chapter 3, the authors of this report conducted the following types of hot spot analyses:

- Statewide hot spot analysis for regions with significant concentrations of deer-vehicle crashes. This analysis identifies regions in the state of California where deer-vehicle crashes occur significantly more than expected compared to a theoretical random spatial distribution of deer-vehicle crashes. Note that a statewide analysis for mule deer carcass data could not be conducted because of inconsistent search and reporting effort (see Chapter 3).
- Descriptive statewide hot spot analysis based on deer-vehicle crash data. This analysis identifies the road sections that have the highest concentration of deer-vehicle crashes in the state of California.
- Descriptive hot spot analyses within each Caltrans district based on deer-vehicle crash data. These analyses identify the road sections that have the highest concentration of deer-vehicle crashes within each Caltrans district.
- Descriptive hot spot analyses within each Caltrans district based on mule deer carcass removal data (i.e. for the Districts 1, 2, 4, 6, 9, 10, and 12, but not for Districts 3, 5, 7, 8, and 11 as these districts had insufficient data; See Chapter 3). These analyses identify the road sections that have the highest concentration of mule deer carcasses within each Caltrans district.
- Maps (no formal hot spot analyses) showing the locations of the reported collisions with black bear, elk, mountain lion, wild boar, bighorn sheep, and pronghorn.

4.2. Methods

Integrating Data into a Spatial Database

The deer crash and large wild mammal carcass locations were integrated into a spatial database (ArcGIS 10.6.1). In the state of California, different counties may have the same 0.1 postmile numbers for the different highway segments in their respective counties. The authors of this report generated unique 0.1-postmile descriptions based on the Caltrans district, the county, the

highway number, and the 0.1 postmile. For example, "10_MPA_49_123" means Caltrans District 10, Mariposa County, Hwy 49, postmile 12.3.

Statewide Analysis for Significant Concentrations of Deer-Vehicle Crashes

The authors of this report conducted a statewide optimal hot spot analysis (Getis-Ord Gi*) for deer-vehicle crashes in ArcGIS 10.6.1 (ESRI, 2018a). This analysis identifies statistically significant spatial clusters (hot spots) of deer crash locations. This analysis also identifies statistically significant areas with a no or low occurrence of deer crashes (cold spots). We selected all deer crash records along the highways that were part of this project. We then created a bounding polygon around the highways. This is the "analysis field" where observations are possible. This bounding polygon was a 500 m (1,640 ft) buffer from approximately the center of the highways resulting in a 1 km wide zone with the highways in the center. This allowed for some spatial imprecision in the original data.

We conducted analyses with 6,827 valid observations, and there were 106 locational outliers that were more than three times the standard deviation distance away from their closest non-coincident neighbor. The optimal grid size was 10,361 m (6.4 mile) (cells of 10,361 m x 10,361 m (6.4 x 6.4 mile)), and the optimal fixed distance band was 62,167 m (38.6 mile). Areas without highways that were part of this project did not have a grid cell and were not evaluated for significant concentrations of deer-vehicle crashes (hot spots), or for significant low concentration of deer-vehicle collisions (cold spots). The authors distinguished three categories of hot spots and cold spots based on a confidence interval of 90%, 95%, and 99%.

Descriptive Hot Spot Analyses

These analyses identify the road sections that have the "highest" concentration of deer-vehicle crashes and mule deer carcasses. The authors conducted three different Kernel density analyses for point features using ArcGIS 10.6.1 (ESRI, 2018b): one statewide analysis for deer-vehicle crashes and two analyses for each Caltrans district (one for deer-vehicle crash data and one for mule deer carcasses).

The statewide analysis included all deer-vehicle crash data from all highways in the state of California considered part of this project (15,090 miles (24,285 km); see Table 1). This statewide analysis can, at least in theory, result in hot spots that are all located in one district, and along one road section, with no hot spots at all in other districts or along other roads. The statewide analysis identifies the road sections with the "highest concentration" of deer-vehicle crashes in the state of California, regardless of the boundaries of the Caltrans districts.

The analyses per district only included either the deer-vehicle crash data or the mule deer carcass data for the district concerned. The analyses per district identify the road sections with the "highest concentration" of deer-vehicle crashes or mule deer carcasses within each district, regardless of the data for other Caltrans districts. Note that because of minimum sample size requirements, the analyses for mule deer carcasses were only conducted in Caltrans Districts 1, 2, 4, 6, 9, 10, and 12 (see Chapter 3). The analyses per district can result in a situation where the

number of deer-vehicle crashes or mule deer carcasses in the "worst" hot spots in one district would not necessarily be sufficient to be identified as hot spots in other districts. For the Kernel density analyses, the researchers divided the study area (either the whole state or an individual Caltrans district) into a grid with a cell size of 25 x 25 m (82 x 82 ft). A 25 m (82 ft) cell size is relatively fine scale and accommodates for some spatial inaccuracies in GPS coordinates of the crash data. The Kernel density analysis calculates the density of deer-vehicle crashes or mule deer carcasses in a neighborhood around each cell based on the quartic kernel function described by Silverman (1986). The locations of the deer-vehicle crashes and mule deer carcasses are considered points and the Kernel density analysis calculates the density of crashes or carcasses in a neighborhood around each cell. Points that are close are weighted more than points that are farther away. Consistent with Gomes et al. (2009) we set the search radius at 500 m (1,640 ft). On a straight road this basically means that crashes or carcasses that are up to 500 m (1,640 ft) away are included in the density analyses for each cell. For the Kernel density, the researchers calculated the area covered within five Kernel isopleths, each with their own color code for displaying on the heatmaps (Table 10).

The researchers considered road sections with no crashes or carcasses, and road sections that fell into the two lowest density categories (50-100%; Table 10) to be "background". For the statewide analysis for deer-vehicle crash data, the road sections that had the highest densities ("top 50%") were considered a "hot spot" (i.e. yellow, orange or red; Table 10). If two hot spots were less than two miles apart, they were treated as one hot spot. For the analyses per Caltrans district (both for deer-vehicle crash data and mule deer carcasses), a similar threshold was applied. However, if the number of "red" or "orange" hot spots reached five or more within a district, no further "yellow" hot spots were identified in that district. Similarly, if the road length covered by the hot spots within a district reached 10 miles or more, no further "yellow" hot spots were identified.

The researchers described the individual hot spots based on the Kernel density category, the length of the hot spots, the number of lanes (based on satellite images), whether potential existing structures are present that may also serve as a wildlife crossing after potential modifications (based on satellite images), and the traffic volume (Annual Average Daily Traffic (AADT; Caltrans, 2019).

Maps of the Reported Carcasses for Selected Other Species

The authors of this report plotted the locations showing the locations of the reported carcasses of black bear, elk, mountain lion, wild boar, bighorn sheep, and pronghorn. Because of the small sample sizes for these species, no formal hot spot analyses were conducted. The low number of carcass removal data for these species illustrate that when it comes to specific species that are relatively rare (even if they are large), that their carcasses may be removed by others, legally or illegally, before the road maintenance crews come by. This suggests that for these relatively rare species other data sources may need to be consulted (e.g. data from natural resource management agencies, community science (or citizen science) data etc.). These other data may include observations of road-killed animals, observations of live animals seen on or near the road, or existing or potential habitat near transportation corridors.

Table 10: The categories used	for maps with the ho	ot spots based on the crash and carcass data.

Percentile categories	Color on maps	Description
75-100%	Green	The 25% of the cells with the lowest density (provided that the density is greater than 0)
50-74.9%	Light green	The next 25% of the cells with the lowest density (provided that the density is greater than 0)
25-49.9%	Yellow	The next 25% of the cells with the lowest density (provided that the density is greater than 0)
5-24.9%	Orange	The next 20% of the cells with the lowest density (provided that the density is greater than 0)
<5%	Red	The 5% of cells with the highest density (provided that the density is greater than 0)

4.3. Results

Statewide Analysis for Significant Concentrations of Deer-Vehicle Crashes

Regions with a statistically significant high concentration of deer-vehicle crashes (hot spots) include the areas around (Figure 8):

- Yreka/Mt Shasta.
- The coastal areas between Eureka and Fort Bragg.
- The foothills and Sierra Nevada north and south-east of Sacramento.
- The eastern slopes of the Sierra Nevada and desert around Susanville.
- The western slopes of the Sierra Nevada near Merced.
- The eastern slopes of the Sierra Nevada near Mono Lake and Mammoth Lakes.
- The coastal areas between San Francisco until just south of Carmel-by-the-Sea.
- The coastal areas near San Simeon until Santa Barbara.

Regions with a statistically significant low concentration of deer-vehicle crashes (cold spots) include the areas around (Figure 8):

- The southern portion of the Central Valley around Modesto until south of Bakersfield.
- The deserts north and east of Los Angeles and San Diego.

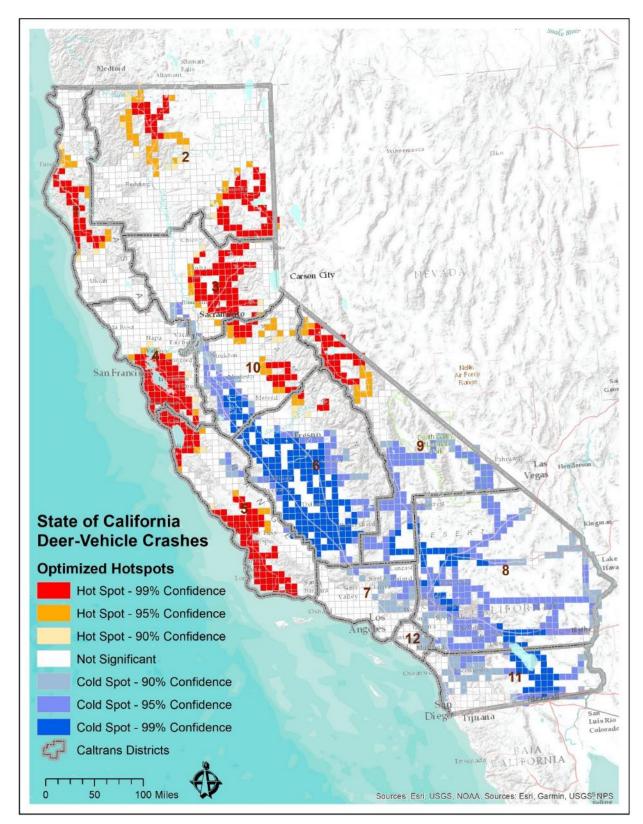


Figure 8: Significant hot spots (red) and cold spots (blue) based on a statewide analysis of deer-vehicle crashes.

Descriptive Hot Spot Analyses

For the statewide descriptive hot spot analysis, there were 13 hot spots that were at least "yellow" (i.e. the top 50% of densest cells representing the highest concentration of deer-vehicle crashes in the state of California, regardless of the boundaries of the Caltrans districts (Figure 9, Table 11, Appendix A).

The hot spots based on per district analyses for deer-vehicle crashes and mule deer carcasses analyses are shown in Figures 10-11. The hot spots based on per district analyses for deer-vehicle crashes are further characterized in Table 12 and detailed maps (per district and for each individual hot spot) are included in Appendix B. The hot spots based on per district analyses for mule deer carcasses are further characterized in Table 13 and detailed maps (per district and for each individual hot spot) are included in Appendix C.

A comparison of the deer-vehicle crash data and mule deer carcass data for each district showed the following:

District 1: While "deer'-vehicle crash data are reported throughout the district, mule deer carcass data are missing from the area north of Eureka. There is no overlap between the hot spots identified through the two data sets. Based on the apparent underreporting of mule deer carcasses, especially north of Eureka, hot spots based on deer-vehicle crash data seem more reliable than those identified based on mule deer carcass data.

District 2: While "deer'-vehicle crash data are reported throughout the district, mule deer carcass data are missing from the areas in the east and south-east portions of the district (e.g. around Susanville) and in the southern areas of the district (e.g. around Red Bluff). However, there is some overlap between the hot spots identified through the two data sets; most notably on I-5, just south of Yreka.

District 3: Only "deer'-vehicle crash data were considered for a hot spot analysis for this district. The mule deer carcass removal data were deemed insufficient. Most of the deer-vehicle crashes were reported from the foothills of the Sierra Nevada, especially around Grass Valley and Placerville.

District 4: Both "deer'-vehicle crash data and mule deer carcass data are reported throughout the district. Both data sources identify sections of I-280 and Hwy 92 around and between Highlands-Baywood Park and Cupertino as hot spots. Mule deer carcasses are also reported in relatively high numbers between Berkeley and Fremont along sections of I-680, Hwy 13, Hwy 24, and I-580.

District 5: Only "deer'-vehicle crash data were considered for a hot spot analysis for this district. The mule deer carcass removal data were deemed insufficient. There was one hot spot identified: US Hwy 101 south of Templeton.

District 6: Both "deer'-vehicle crash data and mule deer carcass data are reported from the western foothills of the Sierra Nevada. Both data sources identify road sections along Hwy 41

near Oakhurst as a hot spot. The carcass data also show a hot spot along Hwy 198 near Three Rivers.

District 7: Only "deer'-vehicle crash data were considered for a hot spot analysis for this district. The mule deer carcass removal data were deemed insufficient. The most severe hot spots were along Hwy 134 and Hwy 2 near Glendale, with additional hot spots near Sherman Oaks (I-405), Casitas Springs (Hwy 33), and Moorpark (Hwy 23).

District 8: Only "deer'-vehicle crash data were considered for a hot spot analysis for this district. The mule deer carcass removal data were deemed insufficient. The most severe hot spots were along Hwy 18, Hwy 138, Hwy 330 on the forested slopes just north of San Bernardino.

District 9: Both "deer'-vehicle crash data and mule deer carcass data are reported from the area near the border with Nevada and not or barely from the areas around Mojave. Both data sets identify sections of US Hwy 395 just west of Bridgeport and another section just east of Mammoth Lakes as hot spots. Other sections of US Hwy 395 were also identified as hot spots, but only by one of the two data sources at a time.

District 10: Both "deer'-vehicle crash data and mule deer carcass data are reported in relatively high numbers from the western foothills of the Sierra Nevada. Both data sets identify sections of Hwy 49 near Bootjack and between Mariposa and Bootjack as a hot spot. However, other hot spots in the foothills were identified by only one of the data sources. The carcass data showed long road sections near Pinegrove (Hwy 88), near Jackson (Hwy 49), east of Sonora and Jamestown (Hwy 108), west of Moccasin (Hwy 49), and east and west of Groveland (Hwy 120).

District 11: Only "deer'-vehicle crash data were considered for a hot spot analysis for this district. The mule deer carcass removal data were deemed insufficient. Most hot spots were along Hwy 79, especially near Warner Springs, Santa Ysabel, and south of Julian.

District 12: Both "deer'-vehicle crash data and mule deer carcass data are reported in relatively high numbers around San Joaquin Hills (Hwy 73), and the foothills of the Santa Ana Mountains (Hwy 241, Hwy 261, Hwy 74).

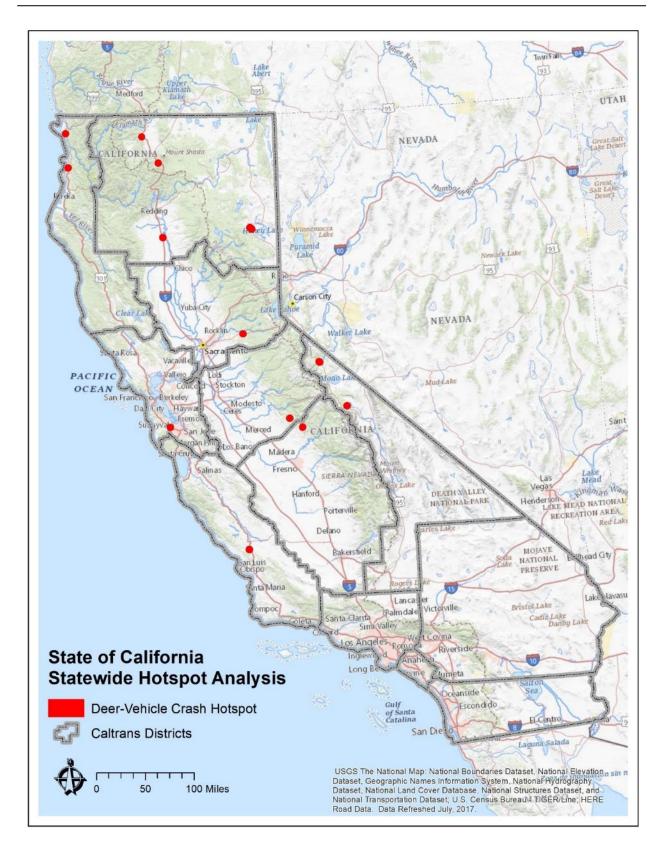


Figure 9: The "worst" hot spots based on a statewide analysis for deer-vehicle crashes in the entire state of California.

Table 11: The "worst" hot spots based on a statewide analysis for deer-vehicle crashes in the entire state of California. Note: AADT = Annual Average Daily Traffic.

Hot spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	Most severe category	Total length (mi)	Length yellow (mi)	Length orange (mi)	Length red (mi)	Lanes (n)	Existing structure	AADT
1	1	Del Norte	Crescent City	US Hwy 101	1_DN_101_237	1_DN_101_235	yellow	0.2	0.2	0.0	0.0	2	No	4,450
2	1	Humboldt	Orick	US Hwy 101	1_HUM_101_1148	1_HUM_101_1145	yellow	0.3	0.3	0.0	0.0	2	Yes	4,050
3	2	Siskiyou	Yreka	I-5	2_SIS_5_447	2_SIS_5_446	yellow	0.1	0.1	0.0	0.0	4	No	19,000
4	2	Siskiyou	Mt. Shasta	I-5	2 SIS 5 99	2_SIS_5_96	yellow	0.3	0.3	0.0	0.0	4	No	22,350
5	2	Tehama	Red Bluff	I-5	2_TEH_5_275	2_TEH_5_272	yellow	0.3	0.3	0.0	0.0	4	No	38,500
6	2	Lassen	Susanville	US Hwy 395	2 LAS 395 555	2 LAS 395 529	yellow	2.6	1.0	0.0	0.0	3	Yes	6,950
7	3	El Dorado	Placerville	US Hwy 50	3 ED 50 221	3 ED 50 224	yellow	0.3	0.3	0.0	0.0	4	No	27,450
8	4	Santa Clara	Los Altos Hills	I-280	4 SCL 280 153	4 SCL 280 151	yellow	0.2	0.2	0.0	0.0	8	No	131,500
9	5	San Luis Obispo	Templeton	US Hwy 101	5 SLO 101 497	5 SLO 101 492	red	0.5	0.2	0.3	0.1	4	Yes	58,850
10	6	Madera	Oakhurst	Hwy 41	6_MAD_41_352	6 MAD 41 348	yellow	0.4	0.4	0.0	0.0	3	No	16,500
11	9	Mono	Bridgeport	US Hwy 395	9 MNO 395 819	9 MNO 395 809	orange	1.0	0.6	0.3	0.0	2	No	3,050
12	9	Mono	Mammoth Lakes	US Hwy 395	9 MNO 395 201	9 MNO 395 195	orange	0.6	0.2	0.4	0.0	4	No	9,650
13	10	Mariposa	Mariposa	Hwy 49	10 MPA 49 126	10 MPA 49 123	yellow	0.3	0.3	0.0	0.0	2	Yes	5,200

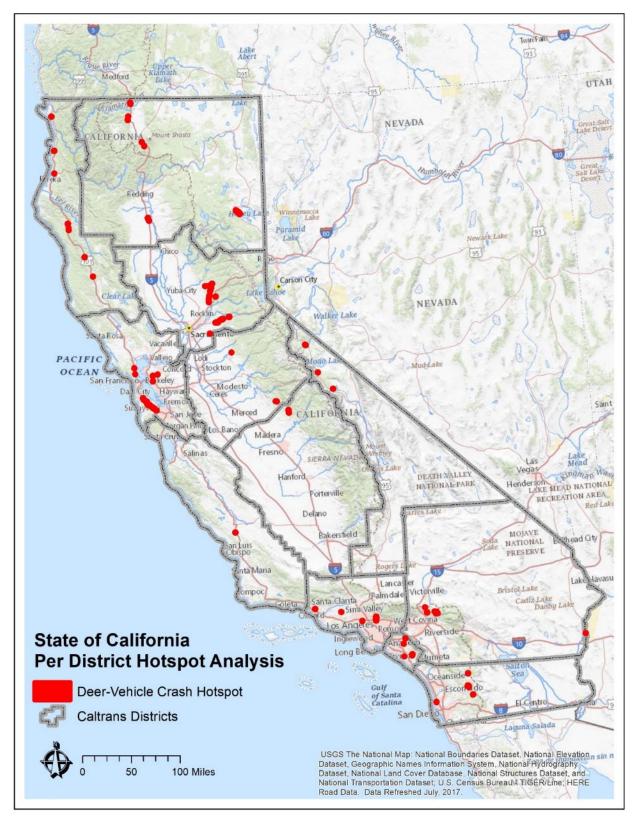


Figure 10: The "worst" hot spots based on deer-vehicle crashes within each Caltrans district.

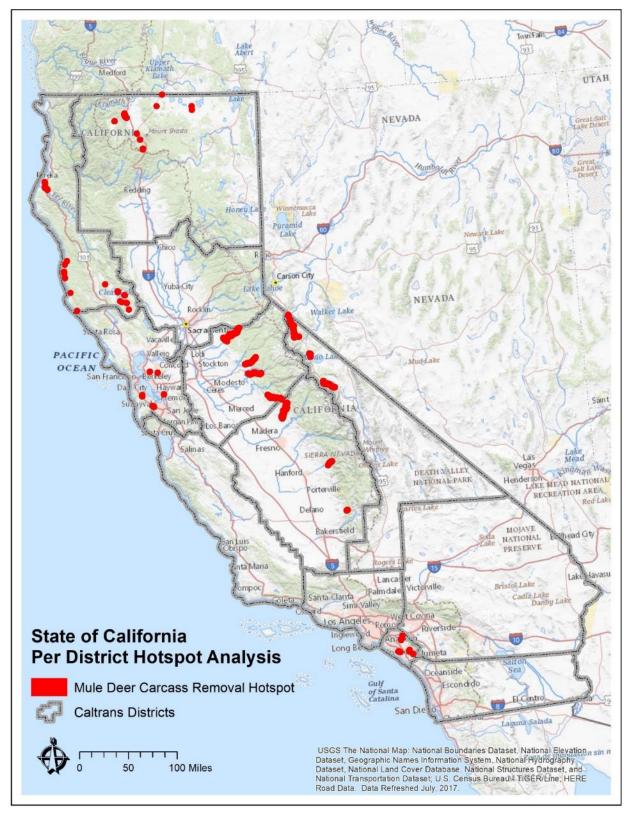


Figure 11: The "worst" hot spots based on mule deer carcasses within each Caltrans district.

Table 12: The "worst" hot spots based on analyses for deer-vehicle crashes per Caltrans district. Note: AADT = Annual Average Daily Traffic.

Hot	D:-						Most	Total	Length	Length	Length	T	E-i-ti	
spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	severe category	length (mi)	yellow (mi)	orange (mi)	red (mi)	Lanes (n)	Existing structure	AADT
1a	1	Del Norte	Crescent City	US Hwy 101	1 DN 101 239	1 DN 101 233	orange	0.6	0.3	0.3	0.0	2	No	4,450
1b	1	Humboldt	Orick	US Hwy 101	1 HUM 101 1150	1 HUM 101 1142	red	0.8	0.4	0.2	0.2	2	Yes	4,050
1c	1	Humboldt	Arcata	US Hwy 101	1 HUM 101 878	1 HUM 101 875	yellow	0.3	0.3	0.0	0.0	4	No	38,200
1d	1	Humboldt	Redway	US Hwy 101	1 HUM 101 147	1 HUM 101 143	yellow	0.4	0.4	0.0	0.0	4	No	8,100
1e	1	Humboldt	Redway	US Hwy 101	1 HUM 101 102	1 HUM 101 100	yellow	0.2	0.2	0.0	0.0	5	No	7,650
1f	1	Humboldt	Redway	US Hwy 101	1 HUM 101 70	1 HUM 101 69	yellow	0.1	0.1	0.0	0.0	4	No	6,850
1g	1	Mendocino	Laytonville	US Hwy 101	1 MEN 101 668	1 MEN 101 665	yellow	0.3	0.3	0.0	0.0	2	No	7,800
1h	1	Mendocino	Willits	US Hwy 101	1 MEN 101 426	1 MEN 101 424	yellow	0.2	0.2	0.0	0.0	4	No	21,000
				3										
2a	2	Siskiyou	Hornbrook	I-5	2 SIS 5 651	2 SIS 5 636	yellow	2.5	0.8	0.0	0.0	4	Yes	16,200
2b	2	Siskiyou	Yreka	I-5	2 SIS 5 486	2 SIS 5 483	yellow	0.3	0.3	0.0	0.0	4	Yes	16,550
2c	2	Siskiyou	Yreka	I-5	2 SIS 5 450	2 SIS 5 444	orange	0.6	0.3	0.3	0.0	4	No	18,850
2d	2	Siskiyou	Mt. Shasta	I-5	2 SIS 5 100	2 SIS 5 95	orange	0.5	0.2	0.3	0.0	4	No	22,350
2e	2	Tehama	Red Bluff	I-5	2 TEH 5 319	2 TEH 5 314	yellow	0.5	0.5	0.0	0.0	5	Yes	42,750
2f	2	Tehama	Red Bluff	I-5	2 TEH 5 276	2 TEH 5 271	yellow	0.5	0.2	0.3	0.0	4	No	38,500
2g	2	Lassen	Susanville	US Hwy 395	2 LAS 395 557	2 LAS 395 501	red	5.6	2.3	0.8	0.2	3	Yes	6,950
2h	2	Siskiyou	Black Butte	I-5	2 SIS 5 149	2 SIS 5 145	yellow	0.4	0.4	0.0	0.0	4	No	24,800
							_							
3a	3	El Dorado	Placerville	US Hwy 50	3 ED 50 229	3 ED 50 220	red	0.9	0.2	0.5	0.2	4	No	27,450
3b	3	El Dorado	Perks Corner	US Hwy 50	3 ED 50 152	3 ED 50 115	orange	3.7	1.4	0.2	0.0	4	Yes	10,600
			Shingle											
3c	3	El Dorado	Springs	US Hwy 50	3 ED 50 88	3 ED 50 54	yellow	3.4	1.1	0.0	0.0	6	No	66,200
3d	3	Sacramento	Rancho Murieta	Hwy 16	3 SAC 16 197	3 SAC 16 194	vellow	0.3	0.3	0.0	0.0	2	No	11,250
3e	3	Nevada	Grass Valley	Hwy 49/20	3 NEV 20 150	3 NEV 20 135	vellow	0.5	0.5	0.0	0.0	6	No	21,800
3f	3	Nevada	Grass Valley	Hwy 20	3 NEV 20 130	3 NEV 20 133	yellow	0.3	0.3	0.0	0.0	3	No	21,300
3g	3	Nevada	Penn Valley	Hwy 20	3 NEV 20 113	3 NEV 20 111 3 NEV 20 66	orange	0.4	0.4	0.0	0.0	3	No	15,800
_3g	3	Nevada	La Barr	11wy 20	3_NEV_20_70	3 NEV 20 00	orange	0.4	0.2	0.2	0.0	3	110	13,600
3h	3	Nevada	Meadows	Hwy 49	3_NEV_49_121	3_NEV_49_117	orange	0.4	0.2	0.2	0.0	3	No	24,500
3i	3	Nevada	Alta Sierra	Hwy 49	3 NEV 49 90	3 NEV 49 79	orange	1.1	0.5	0.2	0.0	3	No	23,550
			Higgins											
3j	3	Nevada	Corner	Hwy 49	3_NEV_49_40	3_NEV_49_26	orange	1.4	0.7	0.3	0.0	2	Yes	23,200
3k	3	Placer	Overhill Dr	Hwy 49	3 PLA 49 113	3 PLA 49 110	yellow	0.3	0.3	0.0	0.0	4	No	30,700
31	3	Placer	Elders Corner	Hwy 49	3 PLA 49 81	3 PLA 49 78	orange	0.3	0.3	0.0	0.0	4	No	32,500
3m	3	Placer	Weimar	I-80	3 PLA 80 295	3 PLA 80 291	yellow	0.4	0.4	0.0	0.0	5	Yes	39,450

Hot spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	Most severe category	Total length (mi)	Length yellow (mi)	Length orange (mi)	Length red (mi)	Lanes	Existing structure	AADT
4a	4	Marin	San Rafael	US Hwy 101	4 MRN 101 128	4 MRN 101 125	yellow	0.3	0.3	0.0	0.0	10	No	202,700
4b	4	Marin	Strawberry	US Hwy 101	4 MRN 101 59	4 MRN 101 56	yellow	0.3	0.3	0.0	0.0	10	No	152,800
4c	4	San Mateo	Highlands- Baywood Park	I-280	4 SM 280 144	4 SM 280 122	yellow	2.2	1.0	0.0	0.0	10	Yes	129,000
4d	4	San Mateo	Woodside	I-280	4 SM 280 95	4 SM 280 31	orange	6.4	1.7	0.3	0.0	8	Yes	114,000
4e	4	Santa Clara	Stanford	I-280	4 SM 280 2	4 SCL 280 182	yellow	2.6	0.6	0.0	0.0	8	No	121,000
4f	4	Santa Clara	Los Altos Hills	I-280	4 SCL 280 154	4 SCL 280 150	red	0.4	1.0	2.0	1.0	6	No	131,500
4g	4	Contra Costa	Condit	Hwy 24	4 CC 24 78	4 CC 24 76	yellow	0.2	0.2	0.0	0.0	8	No	209,500
4h	4	Contra Costa	Orinda	Hwy 24	4 CC 24 25	4 CC 24 21	yellow	0.4	0.4	0.0	0.0	8	No	188,000
4i	4	Alameda	Redwood Heights	Hwy 13	4 ALA 13 54	4 ALA 13 51	yellow	0.3	0.3	0.0	0.0	4	No	54,600
5a	5	San Luis Obispo	Templeton	US Hwy 101	5 SLO 101 497	5 SLO 101 492	red	0.5	0.2	0.3	0.1	4	Yes	58,850
6a	6	Madera	Oakhurst	Hwy 41	6 MAD 41 352	6 MAD 41 347	red	0.5	0.2	0.2	0.1	3	No	19,000
6b	6	Madera	Oakhurst	Hwy 41	6 MAD 41 317	6 MAD 41 314	yellow	0.3	0.3	0.0	0.0	2	No	19,000
				,										
7a	7	Los Angeles	Glendale	Hwy 134	7 LA 134 94	7 LA 134 90	red	0.4	0.1	0.2	0.1	8	No	209,500
7b	7	Los Angeles	Glendale	Hwy 2	7 LA 2 228	7 LA 2 200	orange	2.8	0.7	0.1	0.0	9	No	124,500
7c	7	Los Angeles	Sherman Oaks	I-405	7 LA 405 387	7 LA 405 383	orange	0.4	0.3	0.1	0.0	12	No	253,500
7d	7	Ventura	Casitas Springs	Hwy 33	7 VEN 33 59	7 VEN 33 55	orange	0.4	0.3	0.1	0.0	3	No	26,500
7e	7	Ventura	Moorpark	Hwy 118	7 VEN 118 202	7 VEN 118 200	yellow	0.2	0.2	0.0	0.0	5	No	79,500
8a	8	San Bernardino	Crestline	Hwy 18	8 SBD 18 162	8 SBD 18 151	red	1.1	0.3	0.6	0.2	4	No	16,550
8b	8	San Bernardino	Silverwood Lake	Hwy 138	8 SBD 138 249	8 SBD 138 247	yellow	0.2	0.2	0.0	0.0	2	No	2,925
8c	8	San Bernardino	Running Springs	Hwy 330	8 SBD 330 433	8 SBD 330 407	orange	2.6	0.6	0.3	0.0	2	No	11,500
8d	8	San Bernardino	Running Springs	Hwy 18	8 SBD 18 294	8 SBD 18 290	yellow	0.4	0.4	0.0	0.0	2	No	5,750
8e	8	San Bernardino	Skyforest	Hwy 18	8_SBD_18_263	8_SBD_18_261	yellow	0.2	0.2	0.0	0.0	2	No	5,750
8f	8	Riverside	Palo Verde Intake	US Hwy 95	8 RIV 95 125	8 RIV 95 123	yellow	0.2	0.2	0.0	0.0	2	No	1,300

Hot spot	Dis-						Most severe	Total length	Length yellow	Length orange	Length red	Lanes	Existing	
ID#	trict	County	Nearby town	Highway	Start hot spot	End hot spot	category	(mi)	(mi)	(mi)	(mi)	(n)	structure	AADT
9a	9	Mono	Bridgeport	US Hwy 395	9 MNO 395 819	9 MNO 395 809	red	1.0	0.5	0.3	0.2	2	No	3,050
9b	9	Mono	Whitmore Hot Spr.	US Hwy 395	9 MNO 395 202	9 MNO 395 195	red	0.7	0.3	0.3	0.1	4	No	7,250
9c	9	Mono	Grant Lake	US Hwy 395	9 MNO 395 448	9 MNO 395 445	yellow	0.7	0.3	0.0	0.0	4	No	4,625
90	9	Willio	Grant Eake	03 11wy 393	9 WINO 393 448	9 WINO 393 443	ychow	0.3	0.3	0.0	0.0	7	INO	4,023
10a	10	Mariposa	Bootjack	Hwy 49	10 MPA 49 127	10 MPA 49 111	red	1.6	0.4	0.2	0.2	2	Yes	5,200
10b	10	Calaveras	San Andreas	Hwy 49	10 CAL 49 208	10 CAL 49 205	yellow	0.3	0.3	0.0	0.0	2	Yes	7,250
11a	11	San Diego	Warner Springs	Hwy 79	11 SD 79 363	11 SD 79 357	red	0.6	0.2	0.2	0.2	2	No	1,400
11b	11	San Diego	Santa Ysabel	Hwy 78	11 SD 79 503	11 SD 78 520	red	2.8	0.2	0.2	0.2	2	No	4,425
110	11	San Diego	Lake	11wy 76	11 3D 76 346	11_3D_76_320	icu	2.0	0.5	0.3	0.1		NO	4,423
11c	11	San Diego	Cuyamaca	Hwy 79	11_SD_79_103	11_SD_79_99	yellow	0.4	0.4	0.0	0.0	2	No	1,650
11d	11	San Diego	La Jolla	I-5	11 SD 5 298	11_SD_5_295	yellow	0.3	0.3	0.0	0.0	12	No	174,500
12a	12	Orange	Las Flores	Hwy 241	12 ORA 241 168	12 ORA 241 152	red	1.6	0.3	0.2	0.1	4	Yes	6,900
			Peters Cany.											
12b	12	Orange	Res.	Hwy 261	12 ORA 261 59	12 ORA 261 56	yellow	0.3	0.3	0.0	0.0	5	Yes	32,200
12c	12	Orange	Villa Park	Hwy 241	12 ORA 241 388	12 ORA 241 385	yellow	0.3	0.3	0.0	0.0	9	No	47,800
12d	12	Orange	Laguna Woods	Hwy 73	12 ORA 73 167	12 ORA 73 165	yellow	0.2	0.2	0.0	0.0	7	No	62,700

Table 13: The "worst" hot spots based on analyses for mule deer carcasses per Caltrans district. Note: AADT = Annual Average Daily Traffic.

Hot spot	Dis-						Most severe	Total length	Length yellow	Length orange	Length red	Lanes	Existing	
ID#	trict	County	Nearby town	Highway	Start hot spot	End hot spot	category	(mi)	(mi)	(mi)	(mi)	(n)	structure	AADT
1A	1	Humboldt	Eureka	US Hwy 101	1_HUM_101_704	1_HUM_101_681	red	2.3	0.9	0.7	0.1	4	yes	24150
1B	1	Humboldt	Fortuna	US Hwy 101	1_HUM_101_641	1_HUM_101_601	yellow	4.0	1.5	0.0	0.0	4	yes	24000
1C	1	Mendocino	Inglenook	Hwy 1	1_MEN_1_685	1_MEN_1_681	yellow	0.4	0.4	0.0	0.0	2	No	4925
1D	1	Mendocino	Fort Bragg	Hwy 1	1_MEN_1_640	1_MEN_1_636	yellow	0.4	0.4	0.0	0.0	2	No	4925
1E	1	Mendocino	Caspar	Hwy 1	1_MEN_1_554	1_MEN_1_534	yellow	2.0	0.5	0.0	0.0	2	Yes	10200
1F	1	Mendocino	Little River	Hwy 1	1_MEN_1_483	1_MEN_1_479	yellow	0.4	0.4	0.0	0.0	2	Yes	3750
1G	1	Mendocino	Elk	Hwy 1	1_MEN_1_275	1_MEN_1_272	yellow	0.3	0.3	0.0	0.0	2	No	1300
1H	1	Mendocino	Anchor Bay	Hwy 1	1 MEN 1 30	1 MEN 1 28	yellow	0.2	0.2	0.0	0.0	2	No	3500
1I	1	Lake	Blue Lakes	Hwy 20	1 LAK 20 10	1 LAK 20 12	yellow	0.2	0.2	0.0	0.0	2	No	9650
1J	1	Lake	Pepperwood Grove	Hwy 20	1 LAK 20 180	1 LAK 20 192	yellow	1.2	0.6	0.0	0.0	2	No	8100
- 15	1	Lunc	Clearlake	1111/ 20	1 E/HC 20 100	1_E/112_0_1/2	j cho w	1.2	0.0	0.0	0.0		110	0100
1K	1	Lake	Oaks	Hwy 20	1_LAK_20_289	1_LAK_20_297	yellow	0.8	0.6	0.0	0.0	2	No	8150
			Riviera											
1L	1	Lake	Estates	Hwy 281	1_LAK_281_167	1 LAK 281_169	yellow	0.1	0.1	0.0	0.0	2	No	6400
1M	1	Lake	Jet Hwy 281	Hwy 29	1 LAK 29 262	1 LAK 29 259	yellow	0.3	0.3	0.0	0.0	2	No	9350
1N	1	Lake	Lower lake Hidden	Hwy 29	1_LAK_29_207	1 LAK 29 198	yellow	0.9	0.6	0.0	0.0	2	No	10900
10	1	Lake	Valley L.	Hwy 29	1 LAK 29 112	1 LAK 29 110	yellow	0.2	0.2	0.0	0.0	2	No	9900
2A	2	Siskiyou	Yreka	I-5	2 SIS 5 471	2_SIS_5_418	red	6.3	1.3	0.3	0.2	4	Yes	19000
2B	2	Siskiyou	Weed	I-5	2 SIS 5 202	2_SIS_5_199	yellow	0.3	0.3	0.0	0.0	4	No	17050
2C	2	Siskiyou	Mt. Shasta	I-5	2 SIS 5 126	2_SIS_5_122	yellow	0.4	0.4	0.0	0.0	4	No	23900
2D	2	Siskiyou	Dunsmuir	I-5	2 SIS 5 15	2 SIS 5 4	yellow	1.1	0.5	0.0	0.0	4	No	20350
2E	2	Siskiyou	Ft. Jones	Hwy 3	2_SIS_3_332	2_SIS_3_329	yellow	0.3	0.3	0.0	0.0	2	No	3625
2F	2	Siskiyou	Indian Tom Lake	US Hwy 97	2 SIS 97 540	2 SIS 97 524	yellow	0.3	0.3	0.0	0.0	2		665
2G	2	Siskiyou	Macdoel	US Hwy 97	2 SIS 97 405	2 SIS 97 403	yellow	0.2	0.2	0.0	0.0	2	No	1190
2H	2	Modoc	Hannchen	Hwy 139	2 MOD 139 391	2 MOD 139 385	yellow	0.6	0.6	0.0	0.0	2	No	1625
2I	2	Modoc	Hannchen	Hwy 139	2 MOD 139 356	2 MOD 139 353	vellow	0.3	0.3	0.0	0.0	2	No	1625
2.	_	1,10400		11.17 109	2 1102 107 000	2 11132 127 222	Jene	0.5	0.5	0.0	0.0	_	1.0	1020
	3	Insufficient da	ta											
4A	4	San Mateo	Highlands- Baywood P.	Hwy 92	4 SM 92 96	4 SM 92 79	orange	1.7	0.9	0.1	0.0	4	No	77200
4B	4	Santa Clara	Los Altos Hills	I-280	4_SCL_280_165	4_SCL_280_144	orange	2.1	0.6	0.2	0.0	8	No	131500

Hot spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	Most severe category	Total length (mi)	Length yellow (mi)	Length orange (mi)	Length red (mi)	Lanes (n)	Existing structure	AADT
4C	4	Alameda	Mission San Jose	I-680	4 ALA 680 67	4 ALA 680 64	red	0.5	0.2	0.2	0.1	6	No	155400
4D	4	Contra Costa	Orinda	Hwy 24	4 CC 24 27	4 CC 24 19	orange	0.8	0.2	0.6	0.0	8	No	188000
4E	4	Contra Costa	Alamo	I-680	4_CC_680_116	4 CC 680 110	orange	0.6	0.3	0.3	0.0	6	No	153850
-TE		001111111111111111111111111111111111111	rtianio	1 000	4_00_000_110	4_00_000_110	Orange	0.0	0.5	0.5	0.0	0	140	133636
	5	Insufficient dat	a											
6A	6	Madera	Oakhurst	Hwy 41	6 MAD 41 393	6 MAD 41 196	red	19.7	2.6	0.6	0.3	2	No	19000
6B	6	Tuolumne	Three Rivers	Hwy 198	6 TUL 198 374	6 TUL 198 369	red	0.5	0.2	0.2	0.1	2	Yes	4525
6C	6	Tuolumne	Three Rivers	Hwy 198	6 TUL 198 440	6 TUL 198 400	yellow	4.4	0.6	0.0	0.0	2	Yes	3175
6D	6	Kern	Alta Sierra	Hwy 155	6 KER 155 491	6 KER 155 469	yellow	2.2	0.2	0.0	0.0	2	No	355
	7	Insufficient dat	a											
	8	Insufficient dat	a											
9A	9	Mono	Topaz Lake	US Hwy 395	9 MNO 395 1201	9 MNO 395 1178	orange	2.3	0.6	0.3	0.0	2	No	3900
9B	9	Mono	Walker	US Hwy 395	9 MNO 395 1143	9 MNO 395 1058	red	8.5	1.7	1.2	0.8	2	Yes	3550
9C	9	Mono	Walker	US Hwy 395	9 MNO 395 1032	9 MNO 395 1008	orange	2.4	0.5	0.1	0.0	2	No	3425
9D	9	Mono	Sonora Junction	US Hwy 395	9 MNO 395 989	9 MNO 395 878		11.1	3.6	0.7	0.0	2	Yes	3425
9E	9	Mono	Mono City	US Hwy 395	9 MNO 395 641	9 MNO 395 579	orange	6.2	0.8	0.7	0.0	4	Yes	3350
9E	9	IVIOIIO	Whitmore Hot	US HWY 393	9 MINO 393 041	9 MINO 393 379	orange	0.2	0.8	0.1	0.0	4	1 68	3330
9F	9	Mono	Sprs.	US Hwy 395	9 MNO 395 282	9_MNO_395_134	red	15.6	2.4	0.6	0.1	4	Yes	7200
10A	10	Amador	Pine Grove	Hwy 88	10 AMA 88 377	10 AMA 88 149	red	22.6	10.8	10.2	0.5	2	No	8250
10B	10	Amador	Jackson	Hwy 49	10_AMA_49_58	10_AMA_49_0	orange	5.8	0.2	1.6	0.0	2	No	8100
10C	10	Tuolumne	Mono Vista	Hwy 108	10_TUO_108_154	10_TUO_108_0	orange	15.4	5.3	0.2	0.0	2	Yes	3975
10D	10	Tuolumne	Moccasin	Hwy 120	10 TUO 120 244	10 TUO 120 219	orange	3.0	2.0	0.2	0.0	2	Yes	4425
10E	10	Tuolumne	Groveland	Hwy 120	10 TUO 120 410	10 TUO 120 303	orange	10.7	2.1	0.1	0.0	2	No	6225
10F	10	Mariposa	Bootjack	Hwy 49	10 MPA 49 196	10 MPA 49 78	orange	11.8	3.0	0.3	0.0	2	Yes	5200
10G	10	Mariposa	Bootjack	Hwy 49	10 MPA 49 38	10 MPA 49 9	orange	2.9	1.1	0.1	0.0	2	No	3500
	11	Insufficient dat	a											
12A	12	Orange	Peters Canyon Reservoir	Hwy 241	12 ORA 241 339	12 ORA 241 321	red	1.8	0.8	0.2	0.1	6	Yes	40150
12B	12	Orange	Las Flores	Hwy 241	12 ORA 241 170	12 ORA 241 150	orange	2.0	0.5	0.1	0.0	4	Yes	6900
12C	12	Orange	San Joaquin Hills	Hwy 73	12 ORA 73 198	12 ORA 73 173	orange	2.5	1.0	0.2	0.0	8	Yes	67650

Hot							Most	Total	Length	Length	Length			
spot	Dis-						severe	length	yellow	orange	red	Lanes	Existing	
ID#	trict	County	Nearby town	Highway	Start hot spot	End hot spot	category	(mi)	(mi)	(mi)	(mi)	(n)	structure	AADT
			Peters Canyon											
12D	12	Orange	Reservoir	Hwy 241	12 ORA 241 373	12_ORA_241_369	yellow	0.4	0.4	0.0	0.0	7	Yes	47800
		•	Rancho											
12E	12	Orange	Mission Viejo	Hwy 74	12 ORA 74 97	12 ORA 74 93	yellow	0.4	0.4	0.0	0.0	2	No	11100

Maps of the Reported Carcasses for Selected Other Species

The locations of the reported carcasses of black bear, elk, mountain lion, bighorn sheep, pronghorn, and wild boar carcasses are shown in Figures 12-17. Black bear carcasses were reported from north-west California, along east and west slopes of the Sierra Nevada, and areas north, west, and east of Los Angeles (Figure 12). Elk carcasses were reported from northern California, north-western California, and along the eastern slope of the Sierra Nevada (Figure 13). Mountain lion carcasses were rarely reported, but have been found from north to south in the state (Figure 14). Bighorn sheep carcasses were reported in the Mojave Desert (Figure 15). The one pronghorn carcass was reported from near the Oregon border (Figure 16). Wild boar carcasses were reported from the western foothills of the Sierra Nevada between Fresno and Bakersfield (Figure 17).

Figure 12: The locations of the reported black bear carcasses.

Figure 13: The locations of the reported elk carcasses.

Figure 14: The locations of the reported mountain lion carcasses.

Figure 15: The locations of the reported bighorn sheep carcasses.

Figure 16: The locations of the reported pronghorn carcasses.

Figure 17: The locations of the reported wild boar carcasses.

4.4. Discussion

In some districts (Caltrans Districts 2, 4, 6, 9, 10, and 12) there is at least some spatial similarity between the hot spots based on deer-vehicle crash data and mule deer carcass data. Since these two data sources are independent, this makes it more likely that there is indeed a relatively high concentration of deer-vehicle collisions along these road sections. However, there is also evidence of missing mule deer carcass data from certain areas, especially in Districts 1 and 2.

In addition to the general underreporting of mule deer carcasses compared to crash data in all districts except District 10 (see Chapter 3), the hot spot analyses in this chapter illustrate that in at least some of the districts (i.e. Districts 1 and 2) some areas within a district did not report any mule deer carcasses whereas these same areas did report deer-vehicle crashes, sometimes in high enough numbers to result in the identification of hot spots. This suggests that the quality of the mule deer carcass data can benefit from more consistent search and reporting effort in the different areas of some districts. Practical suggestions include verification that all maintenance crews do record and submit mule deer carcasses, especially along road sections already identified as hot spots based on deer-vehicle crash data, and that these records are entered in the central database. Regular data entry and standard data summary reports can help identify areas from which mule deer carcasses are substantially below the expected number of observations.

5. PRIORITIZATION DEER-VEHICLE CRASH AND MULE DEER CARCASS HOT SPOTS

5.1. Introduction

Chapter 4 identified the worst deer-vehicle crash and mule deer carcass hot spots based on a statewide analysis (crash data only) and analyses per Caltrans district (crash and carcass data). In this chapter, these hot spots are prioritized based on parameters related to human safety, biological conservation, and economics.

5.2. Methods

The deer-vehicle crash and mule deer carcass hot spots were prioritized based on three types of parameters:

- **Human safety:** the absolute number of deer-vehicle crashes or mule deer carcasses recorded in each hot spot over 10 years (crash data 2005 through 2014; carcass data 2000 through 2009).
- **Biological conservation:** whether the hot spot was (partially) located in or adjacent to one or both of the following types of areas:
 - A "Natural Landscape Block" or an "Essential Connectivity Area" (Figure 18). The researchers used existing maps generated through the California Essential Habitat Connectivity Project (Spencer et al., 2010) to identify areas that are considered most important to a spatial network of areas important to nature conservation. The maps distinguish between "Natural Landscape Blocks" and "Essential Connectivity Areas". Natural Landscape Blocks are relatively large areas (blocks ≥10,000 acres (≥4,047 ha)) with relatively high nature conservation values. Essential Connectivity Areas are paths of least resistance between these Natural Landscape Blocks (Spencer et al., 2010). Of the 15,090 highway miles (24,285 km) that are part of this project, 4,048 miles (6,515 km) (26.8%) overlapped with a "Natural Landscape Block" or an "Essential Connectivity Area".
 - Of the 15,090 highway miles (24,285 km) that are part of this project, 1,353 miles (2,177 km) (9.0%) overlapped with critical habitat.

Note that of the 15,090 highway miles (24,285 km) that are part of this project, 4,741 miles (4,741 km) (31.4%) overlapped with either a "Natural Landscape Block", an "Essential Connectivity Area" or critical habitat.

• **Economics:** The total estimated costs associated with deer-vehicle crashes or mule deer carcasses in a hot spot, standardized per mile per year. Each deer-vehicle collision (crash or carcass) was set at \$6,617 (Huijser et al., 2009). Note that this value is primarily based on human safety parameters and not on passive use values for wildlife.

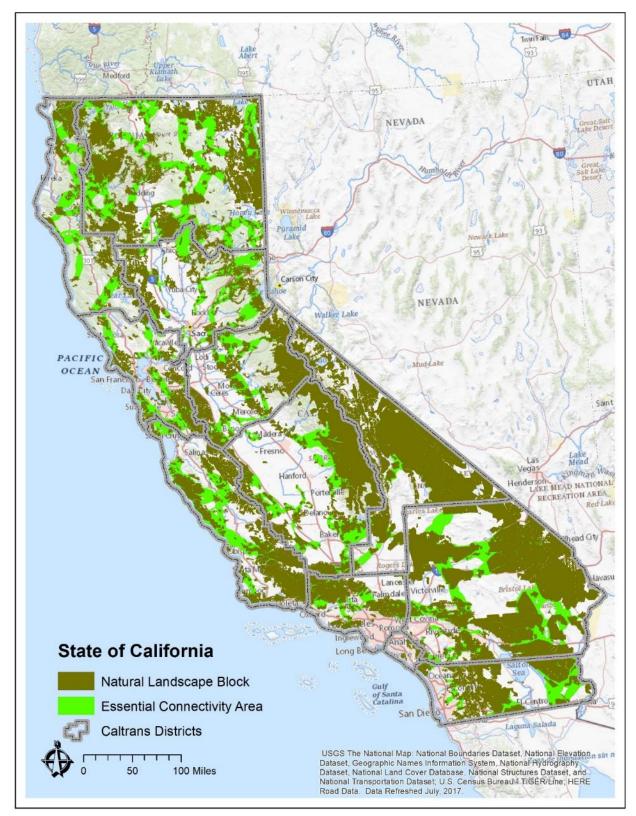


Figure 18: "Natural Landscape Block" or an "Essential Connectivity Area" from the California Essential Habitat Connectivity Project (Spencer et al., 2010).

Figure 19: Critical habitat for threatened or endangered species (USFWS, 2019).

Each of the three types of parameters contributed equally to the prioritization process. The human safety, biological conservation and economic parameters each had 100 "points" that were distributed over the hot spots included in that analysis. For example, for the statewide deervehicle crash hot spot analysis, there were 13 hot spots, and depending on the number of deervehicle crashes in a hot spot, each hot spot received a portion of the 100 human safety points. However, for the "per-district analyses", the 100 points were distributed over the hot spots within each district.

For biological conservation there were two sub-parameters; one for a hot spot being in a Natural Landscape Block or an Essential Connectivity Area and one for a hot spot being in critical habitat for threatened or endangered species. For each hot spot, the researchers tallied whether the hot spot met one, both, or neither of the two sub-parameters. This resulted in a maximum tally of "2" for each hot spot. The researchers then tallied how many points (2 maximum per hot spot) were allotted to all of the hot spots that were part of that particular analysis. Based on this total number, and the tally for the individual hot spots, the 100 points for biological conservation were proportionally distributed over the hot spots.

Finally, the economics parameter was also allotted 100 points that were distributed over the hot spots that were part of the analysis. Note that the economic parameter was expressed in dollars per mile per year. These dollar values can be compared to the economic thresholds for different types and combinations of mitigation measures by Huijser et al. (2009) (Table 14).

The total score for human safety, biological conservation, and for economics was summed and divided by 3. This meant that the sum of the total score for each analysis was 100 points, distributed over the individual hot spots that were part of that analysis. The hot spots were ranked based on this final score.

If a hot spot was in or adjacent to critical habitat, the authors of this report listed the threatened or endangered animal species concerned. Knowing which threatened or endangered animal species are present in or near a hot spot can help guide the design of mitigation measures aimed at reducing deer-vehicle collisions and providing habitat connectivity for a wide range of animal species. It can help guide the design so that threatened or endangered species may also benefit from the mitigation measures, or it can help guide the design so that the threatened or endangered species are not negatively impacted by the mitigation measures.

While it may seem strange to include non-terrestrial animal species (e.g. fish and birds) in this analysis, it is advisable to include all species. For example, if an underpass for large mammals is combined with a stream crossing, knowing about threatened or endangered fish species is important for the decision, design, construction and maintenance phase. Similarly, knowing about threatened or endangered birds in the area can be important for potential vegetation management in the rights-of-way (either as a stand-alone measure, or at the approaches of crossing structures for large wild mammals). We also included all listed animal species in the weighting process for how important a road section is to biological conservation. All animal species can suffer from habitat fragmentation associated with highways; terrestrial species are confronted with open habitat, unnatural substrate (pavement) and traffic, aquatic species may be confronted with changes in hydrology, light, and aquatic vegetation in culverts or other

structures under the highway, and flying species may be reluctant to cross the open linear areas resulting from highways and adjacent rights-of-way.

Table 14: Economic thresholds (primarily based on human safety parameters) for the implementation of different types and combinations of mitigation measures (based on Huijser et al., 2009).

	Thre	eshold
	per km	per mile
Measure	per year	per year
Fence, underpass (one per 2 km (1.24		
mile)), jump-outs	\$18,123	\$29,166.07
Fence, underpass (one per 2 km) and		
overpass (one per 24 km (14.91 mile)),		
jump-outs	\$24,230	\$38,994.31
Animal detection system		
(ADS)	\$37,014	\$59,568.11
Fence, gap with ADS (one per 2 km (1.24		
mile)), jump-outs	\$28,150	\$45,302.92

5.3. Results

The scoring results and the final ranking processes for the statewide deer-vehicle crash analyses and the deer-vehicle crash and mule deer carcass analyses per district are summarized in Tables 15 through 17.

Table 15: The ranking of the hot spots based on a statewide analysis for deer-vehicle crashes in the entire State of California.

					Human	safety	Biological	conservat	tion	Econom	ics	Tot	tal
Hot spot ID#	Dis- trict	County	Nearby town	Highway	Deer crashes (n)	Score	Essential Habitat Connectivity	Habitat	Score	Deer crashes (\$/mi/yr)		Score	Rank
1	1	Del Norte	Crescent City	US Hwy 101	10	5.08	Yes	No	16.67	\$33,085.00	10.95	10.90	4
2	1	Humboldt	Orick	US Hwy 101	10	5.08	Yes	Yes	33.33	\$22,056.67	7.30	15.24	1
3	2	Siskiyou	Yreka	I-5	5	2.54	No	No	0.00	\$33,085.00	10.95	4.50	10
4	2	Siskiyou	Mt. Shasta	I-5	10	5.08	No	No	0.00	\$22,056.67	7.30	4.13	11
5	2	Tehama	Red Bluff	I-5	10	5.08	Yes	No	16.67	\$22,056.67	7.30	9.68	5
6	2	Lassen	Susanville	US Hwy 395	44	22.34	No	No	0.00	\$11,198.00	3.71	8.68	6
7	3	El Dorado	Placerville	US Hwy 50	8	4.06	No	No	0.00	\$17,645.33	5.84	3.30	13
8	4	Santa Clara	Los Altos Hills	I-280	10	5.08	No	No	0.00	\$33,085.00	10.95	5.34	8
9	5	San Luis Obispo	Templeton	US Hwy 101	19	9.64	No	No	0.00	\$25,144.60	8.33	5.99	7
10	6	Madera	Oakhurst	Hwy 41	13	6.60	No	No	0.00	\$21,505.25	7.12	4.57	9
11	9	Mono	Bridgeport	US Hwy 395	29	14.72	Yes	No	16.67	\$19,189.30	6.35	12.58	2
12	9	Mono	Mammoth Lakes	US Hwy 395	20	10.15	Yes	No	16.67	\$22,056.67	7.30	11.37	3
13	10	Mariposa	Mariposa	Hwy 49	9	4.57	No	No	0.00	\$19,851.00	6.57	3.71	12

Table 16: The ranking of the hot spots based on analyses for deer-vehicle crashes per Caltrans district.

					Human	safety	Biologica	al conservation	on	Econom	ics	To	tal
Hot					Deer	•	Essential	Critical		Deer			
spot	Dis-				crashes		Habitat	Habitat		crashes			
ID#	trict	County	Nearby town	Highway	(n)	Score	Connectivity	USFWS	Score	(\$/mi/yr)	Score	Score	Rank
1a	1	Del Norte	Crescent City	US Hwy 101	11	19.64	Yes	No	25.00	\$12,131.17	10.65	18.43	2
1b	1	Humboldt	Orick	US Hwy 101	13	23.21	Yes	Yes	50.00	\$10,752.63	9.44	27.55	1
1c	1	Humboldt	Arcata	US Hwy 101	6	10.71	No	No	0.00	\$13,234.00	11.62	7.45	6
1d	1	Humboldt	Redway	US Hwy 101	7	12.50	No	Yes	25.00	\$11,579.75	10.17	15.89	3
1e	1	Humboldt	Redway	US Hwy 101	5	8.93	No	No	0.00	\$16,542.50	14.53	7.82	4
1f	1	Humboldt	Redway	US Hwy 101	3	5.36	No	No	0.00	\$19,851.00	17.43	7.60	5
1g	1	Mendocino	Laytonville	US Hwy 101	6	10.71	No	No	0.00	\$13,234.00	11.62	7.45	6
1h	1	Mendocino	Willits	US Hwy 101	5	8.93	No	No	0.00	\$16,542.50	14.53	7.82	4
2a	2	Siskiyou	Hornbrook	I-5	19	11.45	Yes	No	25.00	\$5,028.92	4.95	13.80	4
2b	2	Siskiyou	Yreka	I-5	8	4.82	No	No	0.00	\$17,645.33	17.38	7.40	5
2c	2	Siskiyou	Yreka	I-5	13	7.83	No	No	0.00	\$14,336.83	14.12	7.32	6
2d	2	Siskiyou	Mt. Shasta	I-5	11	6.63	No	No	0.00	\$14,557.40	14.34	6.99	7
2e	2	Tehama	Red Bluff	I-5	10	6.02	Yes	No	25.00	\$13,234.00	13.03	14.69	2
2f	2	Tehama	Red Bluff	I-5	10	6.02	Yes	No	25.00	\$13,234.00	13.03	14.69	2
2g	2	Lassen	Susanville	US Hwy 395	87	52.41	No	No	0.00	\$10,279.98	10.12	20.84	1
2h	2	Siskiyou	Black Butte	I-5	8	4.82	Yes	No	25.00	\$13,234.00	13.03	14.28	3
3a	3	El Dorado	Placerville	US Hwy 50	19	10.80	No	No	0.00	\$13,969.22	9.63	6.81	3
3b	3	El Dorado	Perks Corner	US Hwy 50	35	19.89	No	No	0.00	\$6,259.32	4.32	8.07	2
3c	3	El Dorado	Shingle Springs	US Hwy 50	28	15.91	No	No	0.00	\$5,449.29	3.76	6.56	4
3d	3	Sacramento	Rancho Murieta	Hwy 16	5	2.84	Yes	No	100.00	\$11,028.33	7.60	36.82	1
3e	3	Nevada	Grass Valley	Hwy 49/20	13	7.39	No	No	0.00	\$17,204.20	11.86	6.42	5
3f	3	Nevada	Grass Valley	Hwy 20	6	3.41	No	No	0.00	\$9,925.50	6.84	3.42	10
3g	3	Nevada	Penn Valley	Hwy 20	7	3.98	No	No	0.00	\$11,579.75	7.99	3.99	9
3h	3	Nevada	La Barr Meadows	Hwy 49	7	3.98	No	No	0.00	\$11,579.75	7.99	3.99	9
3i	3	Nevada	Alta Sierra	Hwy 49	15	8.52	No	No	0.00	\$9,023.18	6.22	4.91	6
3j	3	Nevada	Higgins Corner	Hwy 49	22	12.50	No	No	0.00	\$10,398.14	7.17	6.56	4
3k	3	Placer	Overhill Dr	Hwy 49	6	3.41	No	No	0.00	\$13,234.00	9.13	4.18	8
31	3	Placer	Elders Corner	Hwy 49	7	3.98	No	No	0.00	\$15,439.67	10.65	4.87	7
3m	3	Placer	Weimar	I-80	6	3.41	No	No	0.00	\$9,925.50	6.84	3.42	10

					Human	safety	Biologica	l conservatio	n	Econom	ics	To	tal
Hot					Deer		Essential	Critical		Deer			
spot	Dis-				crashes		Habitat	Habitat		crashes			
ID#	trict	County	Nearby town	Highway	(n)	Score	Connectivity	USFWS	Score	(\$/mi/yr)	Score	Score	Rank
4a	4	Marin	San Rafael	US Hwy 101	6	4.38	Yes	No	10.00	\$13,234.00	9.13	7.84	6
4b	4	Marin	Strawberry	US Hwy 101	6	4.38	No	No	0.00	\$13,234.00	9.13	4.50	9
			Highlands-										
4c	4	San Mateo	Baywood Park	I-280	19	13.87	Yes	Yes	20.00	\$5,714.68	3.94	12.60	2
4d	4	San Mateo	Woodside	I-280	62	45.26	Yes	Yes	20.00	\$6,410.22	4.42	23.23	1
4e	4	Santa Clara	Stanford	I-280	14	10.22	Yes	No	10.00	\$3,563.00	2.46	7.56	7
4f	4	Santa Clara	Los Altos Hills	I-280	10	7.30	Yes	No	10.00	\$16,542.50	11.41	9.57	4
4g	4	Contra Costa	Condit	Hwy 24	5	3.65	Yes	No	10.00	\$16,542.50	11.41	8.35	5
4h	4	Contra Costa	Orinda	Hwy 24	7	5.11	Yes	Yes	20.00	\$11,579.75	7.99	11.03	3
4i	4	Alameda	Redwood Heights	Hwy 13	8	5.84	No	No	0.00	\$17,645.33	12.17	6.00	8
				-									
		San Luis				100.0							
5a	5	Obispo	Templeton	US Hwy 101	19	0	No	No	100	\$25,144.60	100	100	1
6a	6	Madera	Oakhurst	Hwy 41	15	71.43	No	No	0	\$19,851.00	58.41	43.28	1
6b	6	Madera	Oakhurst	Hwy 41	6	28.57	No	No	0	\$13,234.00	38.94	22.50	2
7a	7	Los Angeles	Glendale	Hwy 134	8	19.05	No	No	0.00	\$13,234.00	26.17	15.07	4
7b	7	Los Angeles	Glendale	Hwy 2	18	42.86	No	No	0.00	\$4,253.79	8.41	17.09	3 5
7c	7	Los Angeles	Sherman Oaks	I-405	6	14.29	No	No	0.00	\$9,925.50	19.63	11.30	5
7d	7	Ventura	Casitas Springs	Hwy 33	6	14.29	Yes	Yes	50.00	\$9,925.50	19.63	27.97	2
7e	7	Ventura	Moorpark	Hwy 118	4	9.52	Yes	Yes	50.00	\$13,234.00	26.17	28.56	1
		San	Crestline										
8a	8	Bernardino	Crestime	Hwy 18	6	23.08	Yes	No	16.67	\$3,609.27	11.06	16.94	4
		San	Silverwood Lake										
8b	8	Bernardino	Silverwood Lake	Hwy 138	2	7.69	Yes	Yes	33.33	\$6,617.00	20.28	20.44	2
		San	Running Springs										
8c	8	Bernardino	Kullillig Springs	Hwy 330	10	38.46	Yes	No	16.67	\$2,545.00	7.80	20.98	1
		San	Running Springs										
8d	8	Bernardino	Kuming Springs	Hwy 18	4	15.38	Yes	No	16.67	\$6,617.00	20.28	17.44	3
		San	Skyforest										
8e	8	Bernardino	-	Hwy 18	2	7.69	Yes	No	16.67	\$6,617.00	20.28	14.88	5
8f	8	Riverside	Palo Verde Intake	US Hwy 95	2	7.69	No	No	0.00	\$6,617.00	20.28	9.33	6

					Human	safety	Biologica	l conservation	on	Econom	ics	To	otal
Hot					Deer		Essential	Critical		Deer			
spot	Dis-				crashes		Habitat	Habitat		crashes			
ID#	trict	County	Nearby town	Highway	(n)	Score	Connectivity	USFWS	Score	(\$/mi/yr)	Score	Score	Rank
9a	9	Mono	Bridgeport	US Hwy 395	30	50.85	Yes	No	33.33	\$19,851.00	34.62	39.60	1
			Whitmore Hot										
9b	9	Mono	Springs	US Hwy 395	21	35.59	Yes	No	33.33	\$19,851.00	34.62	34.51	2
9c	9	Mono	Grant Lake	US Hwy 395	8	13.56	Yes	No	33.33	\$17,645.33	30.77	25.89	3
10a	10	Mariposa	Bootjack	Hwy 49	22	84.62	No	No	0.00	\$9,098.38	50.77	45.13	2
10b	10	Calaveras	San Andreas	Hwy 49	4	15.38	Yes	No	100.00	\$8,822.67	49.23	54.87	1
11a	11	San Diego	Warner Springs	Hwy 79	6	27.27	Yes	Yes	50.00	\$6,617.00	32.19	36.49	1
11b	11	San Diego	Santa Ysabel	Hwy 78	10	45.45	Yes	No	25.00	\$2,363.21	11.49	27.32	2
11c	11	San Diego	Lake Cuyamaca	Hwy 79	3	13.64	Yes	No	25.00	\$4,962.75	24.14	20.93	3
11d	11	San Diego	La Jolla	I-5	3	13.64	No	No	0.00	\$6,617.00	32.19	15.27	4
12a	12	Orange	Las Flores	Hwy 241	12	52.17	No	No	0.00	\$4,962.75	15.25	22.48	2
		_	Peters Canyon										
12b	12	Orange	Reservoir	Hwy 261	4	17.39	No	No	0.00	\$8,822.67	27.12	14.84	3
12c	12	Orange	Villa Park	Hwy 241	4	17.39	No	No	0.00	\$8,822.67	27.12	14.84	3
12d	12	Orange	Laguna Woods	Hwy 73	3	13.04	Yes	No	100.00	\$9,925.50	30.51	47.85	1

Table 17: The ranking of the hot spots based on analyses for mule deer carcasses per Caltrans district.

		, , , , , , , , , , , , , , , , , , ,			Human safety			Biological conservation			Economics		Total	
Hot spot ID#	Dis- trict	County	Nearby town	Highway	Mule deer car- casses (n)	Score	Essential Habitat Connectivity	Critical Habitat USFWS	Score	Mule deer carcasses (\$/mi/yr)	Score	Score	Rank	
1A	1	Humboldt	Eureka	US Hwy 101	20	25.32	No	Yes	25.00	\$5,753.91	8.16	19.49	1	
1B	1	Humboldt	Fortuna	US Hwy 101	19	24.05	No	Yes	25.00	\$3,143.08	4.46	17.84	2	
1C	1	Mendocino	Inglenook	Hwy 1	3	3.80	No	No	0.00	\$4,962.75	7.04	3.61	9	
1D	1	Mendocino	Fort Bragg	Hwy 1	3	3.80	No	No	0.00	\$4,962.75	7.04	3.61	9	
1E	1	Mendocino	Caspar	Hwy 1	5	6.33	No	No	0.00	\$1,654.25	2.35	2.89	12	
1F	1	Mendocino	Little River	Hwy 1	2	2.53	Yes	No	25.00	\$3,308.50	4.69	10.74	4	
1G	1	Mendocino	Elk	Hwy 1	2	2.53	No	No	0.00	\$4,411.33	6.26	2.93	11	
1H	1	Mendocino	Anchor Bay	Hwy 1	2	2.53	No	No	0.00	\$6,617.00	9.39	3.97	6	
1 I	1	Lake	Blue Lakes	Hwy 20	2	2.53	Yes	No	25.00	\$6,617.00	9.39	12.31	3	
1J	1	Lake	Pepperwood Grove	Hwy 20	5	6.33	No	No	0.00	\$2,757.08	3.91	3.41	11	
1K	1	Lake	Clearlake Oaks	Hwy 20	6	7.59	No	No	0.00	\$4,962.75	7.04	4.88	5	
1L	1	Lake	Riviera Estates	Hwy 281	1	1.27	No	No	0.00	\$6,617.00	9.39	3.55	10	
1M	1	Lake	Jct Hwy 281	Hwy 29	2	2.53	No	No	0.00	\$4,411.33	6.26	2.93	11	
1N	1	Lake	Lower lake	Hwy 29	5	6.33	No	No	0.00	\$3,676.11	5.22	3.85	8	
10	1	Lake	Hidden Valley lake	Hwy 29	2	2.53	No	No	0.00	\$6,617.00	9.39	3.97	6	
2A	2	Siskiyou	Yreka	I-5	35	58.33	No	No	0.00	\$3,676.11	8.39	22.24	1	
2B	2	Siskiyou	Weed	I-5	3	5.00	No	No	0.00	\$6,617.00	15.11	6.70	7	
2C	2	Siskiyou	Mt. Shasta	I-5	2	3.33	Yes	No	20.00	\$3,308.50	7.55	10.30	6	
2D	2	Siskiyou	Dunsmuir	I-5	8	13.33	Yes	No	20.00	\$4,812.36	10.99	14.77	2	
2E	2	Siskiyou	Ft. Jones	Hwy 3	3	5.00	No	No	0.00	\$6,617.00	15.11	6.70	7	
2F	2	Siskiyou	Indian Tom Lake	US Hwy 97	2	3.33	No	No	0.00	\$4,411.33	10.07	4.47	8	
2G	2	Siskiyou	Macdoel	US Hwy 97	2	3.33	Yes	No	20.00	\$6,617.00	15.11	12.81	3	
2H	2	Modoc	Hannchen	Hwy 139	3	5.00	Yes	No	20.00	\$3,308.50	7.55	10.85	5	
2I	2	Modoc	Hannchen	Hwy 139	2	3.33	Yes	No	20.00	\$4,411.33	10.07	11.14	4	

					Human safety Biological conservation		ion	Economics		Total			
Hot spot ID#	Dis- trict	County	Nearby town	Highway	Mule deer car- casses (n)	Score	Essential Habitat Connectivity	Critical Habitat USFWS	Score	Mule deer carcasses (\$/mi/yr)	Score	Score	Rank
	3	Insufficient da	ta										
4A	4	San Mateo	Highlands- Baywood Park	Hwy 92	16	37.21	Yes	No	20.00	\$6,227.76	22.57	26.59	2
4B	4	Santa Clara	Los Altos Hills	I-280	9	20.93	Yes	No	20.00	\$2,835.86	10.28	17.07	3
4C	4	Alameda	Mission San Jose	I-680	4	9.30	Yes	No	20.00	\$5,293.60	19.19	16.16	4
4D	4	Contra Costa	Orinda	Hwy 24	8	18.60	Yes	Yes	40.00	\$6,617.00	23.98	27.53	1
4E	4	Contra Costa	Alamo	I-680	6	13.95	No	No	0.00	\$6,617.00	23.98	12.65	5
	5	Insufficient da	ta										
6A	6	Madera	Oakhurst	Hwy 41	28	71.79	No	No	0.00	\$940.49	16.97	29.59	2
6B	6	Tuolumne	Three Rivers	Hwy 198	2	5.13	No	No	0.00	\$2,646.80	47.76	17.63	3
6C	6	Tuolumne	Three Rivers	Hwy 198	5	12.82	Yes	No	100.00	\$751.93	13.57	42.13	1
6D	6	Kern	Alta Sierra	Hwy 155	4	10.26	No	No	0.00	\$1,203.09	21.71	10.65	4
	7	Insufficient dat	ta										
	8	Insufficient da	ta I										
9A	9	Mono	Topaz Lake	US Hwy 395	19	5.16		No	0.00	\$5,466.22	18.67	7.94	6
9B	9	Mono	Walker	US Hwy 395	81	22.01	Yes	No	20.00	\$6,305.61	21.53	21.18	3
9C	9	Mono	Walker	US Hwy 395	8	2.17	Yes	No	20.00	\$2,205.67	7.53	9.90	5
9D	9	Mono	Sonora Junction	US Hwy 395	103	27.99	Yes	No	20.00	\$6,140.10	20.97	22.99	2
9E	9	Mono	Mono City Whitmore Hot	US Hwy 395	39	10.60	Yes	No	20.00	\$4,162.31	14.21	14.94	4
9F	9	Mono	Springs	US Hwy 395	118	32.07	Yes	No	20.00	\$5,005.17	17.09	23.05	1

					Human safety Biological conservation		on	Economics		Total			
Hot spot ID#	Dis- trict	County	Nearby town	Highway	Mule deer car- casses (n)	Score	Essential Habitat Connectivity	Critical Habitat USFWS	Score	Mule deer carcasses (\$/mi/yr)	Score	Score	Rank
10A	10	Amador	Pine Grove	Hwy 88	587	52.60	Yes	No	50.00	\$17,186.63	28.85	43.82	1
10B	10	Amador	Jackson	Hwy 49	80	7.17	Yes	No	50.00	\$9,126.90	15.32	24.16	2
10C	10	Tuolumne	Mono Vista	Hwy 108	222	19.89	No	No	0.00	\$9,538.79	16.01	11.97	3
10D	10	Tuolumne	Moccasin	Hwy 120	43	3.85	No	No	0.00	\$9,484.37	15.92	6.59	4
10E	10	Tuolumne	Groveland	Hwy 120	81	7.26	No	No	0.00	\$5,009.13	8.41	5.22	5
10F	10	Mariposa	Bootjack	Hwy 49	83	7.44	No	No	0.00	\$4,654.33	7.81	5.08	6
10G	10	Mariposa	Bootjack	Hwy 49	20	1.79	No	No	0.00	\$4,563.45	7.66	3.15	7
	11	Insufficient da	ta										
12A	12	Orange	Peters Canyon Reservoir	Hwy 241	10	27.78	No	No	0.00	\$3,676.11	19.12	15.63	4
12B	12	Orange	Las Flores	Hwy 241	5	13.89	No	No	0.00	\$1,654.25	8.60	7.50	5
12C	12	Orange	San Joaquin Hills	Hwy 73	15	41.67	Yes	No	25.00	\$3,970.20	20.65	29.11	1
12D	12	Orange	Peters Canyon Reservoir Rancho Mission	Hwy 241	3	8.33	Yes	No	25.00	\$4,962.75	25.81	19.72	3
12E	12	Orange	Viejo	Hwy 74	3	8.33	Yes	Yes	50.00	\$4,962.75	25.81	28.05	2

The threatened or endangered species that had critical habitat in or adjacent to the hot spots are listed in Table 18. The species include a fish species, amphibians (frog and toad species), reptiles (a snake species), a butterfly species, and several bird species.

Table 18: The ranking of the hot spots based on analyses for mule deer carcasses per Caltrans district.

Hot spot ID#	District	County	n analyses for mule deer ca	Highway	Species 1	Species 2		
Hot spot ID#	District	County	Nearby town	Highway	Species 1	Species 2		
Statewide deer-ve	hicle crashe	?S						
2	1	Humboldt	Orick	US Hwy 101	Marbled murrelet	Tidewater goby		
Per district deer-v	vehicle crasi	hes						
1b	1	Humboldt	Orick	US Hwy 101	Marbled murrelet	Tidewater goby		
1d	1	Humboldt	Redway	US Hwy 101	Marbled murrelet			
4c	4	San Mateo	Highlands-Baywood Park	I-280	Bay checkerspot butterfly	California red-legged frog		
4d	4	San Mateo	Woodside	I-280	Bay checkerspot butterfly	California red-legged frog		
4h	4	Contra Costa	Orinda	Hwy 24	Alameda whipsnake (=striped racer)			
7d	7	Ventura	Casitas Springs	Hwy 33	Southwestern willow flycatcher			
7e	7	Ventura	Moorpark	Hwy 118	Coastal California gnatcatcher			
8a	8	San Bernardino	Crestline	Hwy 18				
8b	8	San Bernardino	Silverwood Lake	Hwy 138	Arroyo (=arroyo southwestern) toad			
11a	11	San Diego	Warner Springs	Hwy 79	Arroyo (=arroyo southwestern) toad			
Per district mule deer carcasses								
1A	1	Humboldt	Eureka	US Hwy 101	Tidewater goby			
1B	1	Humboldt	Fortuna	US Hwy 101	Western snowy plover	Yellow-billed Cuckoo		
4D	4D 4 Contra Costa		Orinda	Hwy 24	Alameda whipsnake (=striped racer)			
12E	12	Orange	Rancho Mission Viejo	Hwy 74	Arroyo (=arroyo southwestern) toad			

5.4. Discussion

While the deer-vehicle crash and mule deer carcass hot spots were ranked based on human safety, biological conservation, and economic parameters, it is important to remember that the human safety parameters were the departure point for these analyses. This means that the hot spots, by definition, had a relatively high number and concentration of deer-vehicle crashes or mule deer carcasses. In other words, it was not possible for a road section that bisects an area of very high biodiversity or very high importance to biological conservation in general, but that had no or only few collisions with deer or mule deer to be identified as a hot spot, let alone receive a high ranking. It was only in the ranking process of these deer-vehicle crash and mule deer carcass hot spots that human safety, biological conservation, and economic parameters had equal weight. In this chapter the tables contain the data for each parameter and parameter group. This allows Caltrans and others to change parameter selections and add potential weight to certain parameters later, should they choose to do so.

Only some of the hot spots met or exceed the economic thresholds from Table 14. However, the values of the economic parameter for the different hot spots should not be compared to the thresholds as if it was a litmus test for implementing or not implementing mitigation measures. The thresholds are primarily based on human safety parameters and exclude passive values associated with biological conservation; they are very conservative by nature. In addition, the economic costs of wildlife-vehicle collisions and the economic benefits of mitigation measures change in time and vary by location.

Note that the economic thresholds in Table 14 are based on a four-lane divided highway (Huijser et al., 2009). However, many of the hot spots are along two-lane highways. If mitigation measures are put in place without widening the road then the thresholds are likely lower than projected in this chapter; there are likely more and longer road sections where the costs associated with wildlife-vehicle collisions meet or exceed the thresholds. If the road is completely reconstructed and widened to four-lanes at the same the mitigation measures are installed there can be overall cost savings, but the costs for the crossing structures will increase compared to those for a two-lane road. Furthermore, there may be cost savings if existing structures originally built for other purposes can be modified so that they are also suitable for wildlife use.

With the consideration of mitigation measures, it is also important to note that the crash and carcass counts are minimum numbers rather than the actual number of deer-vehicle crashes or mule deer carcass counts, and we know based on Chapter 3 that the mule deer carcass counts are severely underreported in all Caltrans districts, except for District 10. While the researchers strongly advise to use the cost-benefit analyses as an important decision support tool, they also urge users to recognize that these analyses are only one of the factors that may or should be considered in the decision-making process. For example, if there are also threatened or endangered species present that would benefit from the mitigation measures (in addition to only mule deer), costs associated with species recovery may be reduced (Personal comment John Cleckler, Caltrans District 4 Liaison, U.S. Fish and Wildlife Service).

6. MITIGATION RECOMMENDATIONS

6.1. Introduction to Effective Mitigation Measures

This chapter contains descriptions of potential mitigation measures at the crash and carcass hot spots, should Caltrans or other stakeholders choose to implement mitigation measures. The approach presented in this chapter is limited to mitigation, rather than also including options for avoidance and compensation (see Chapter 2). For this project, the approach is also restricted to mitigation measures aimed at:

- Improving human safety and reducing direct wildlife mortality through reducing deervehicle collisions or collisions with other large mammals or large ungulates.
- Keeping the highways permeable or making them more permeable to wildlife in general despite the presence of the highway, traffic and potential mitigation measures aimed at keeping deer off the road (e.g. wildlife fencing).

There are many publications that include an overview of mitigation measures aimed at reducing collisions with large mammals and at providing safe crossing opportunities for wildlife (see e.g. Huijser et al., 2008; Clevenger & Huijser, 2011). We refer to these publications for a general overview of the effectiveness or lack of effectiveness of dozens of different types and combinations of mitigation measures. However, there are only two types of mitigation packages that can substantially reduce collisions with large wild mammals (Table 19):

- 1. Wildlife fences in combination with wildlife crossing structures (underpasses or overpasses)
- 2. Animal detection systems, either as a stand-alone measure or at a gap in the fence.

However, while wildlife crossing structures allow for safe crossing opportunities to the other side of the highway, animal detection systems do not make it any easier for animals to cross a road (Huijser et al., 2015b; Table 19). To get to the other side of the highway, animals still must cross an open area with unnatural substrate and avoid the vehicles that drive on the road. Therefore, animal detection systems should only be considered if reducing collisions with large mammals is the only objective, and they should not be considered if providing safe crossing opportunities and increasing habitat connectivity is also an objective. Alternatively, animal detection systems are a temporary measure to reduce collisions with large mammals until a highway needs reconstruction because the road is at the end of its life span or because the highway has become so busy that road reconstruction and road widening is required.

Table 19: Comparison of fences, fences in combination with wildlife crossing structures, and animal detection

systems.	T = 0	T. 1 11116	
Parameter	Fences	Fences and wildlife crossing structures	Animal detection systems (stand- alone or at gap in fence)
Substantial collision reduction (>80%) with large mammals.	Yes (80-100%) if the measures are designed for the target species, correctly installed, and maintained (Huijser et al., 2016a).	Yes (80-100%) if the measures are designed for the target species, correctly installed, and maintained (Huijser et al., 2016a).	Possibly (33-97%) but many animal detection systems are not reliable in detecting the target species, or do not result in substantial (>80%) collision reduction (Huijser et al., 2015b).
Maintain or improve habitat connectivity for a wide range of species (large mammals, small and medium sized mammals, reptiles, amphibians).	No, fences alone result in a (near) absolute barrier, at least for the target species, and no safe crossing opportunities are provided for any species.	Yes, if the structures are in the correct locations for the target species, if the type and dimensions match the requirements of the target species, wildlife use can be high, and if the structures are sufficiently close, connectivity can be improved compared to an unmitigated highway (Clevenger et al., 2009; Huijser et al., 2016b)	No, animal detection systems warn drivers about the presence of large mammals on or near the highway, but these systems do not make it any easier for animals to cross a road (Huijser et al., 2015b).
Indicative costs	\$155,000 per mile road length with fences on both sides (Huijser et al., 2009)	\$155,000 per mile road length with fences on both sides; \$500,000 for a large mammal underpass; \$5,000,000 for an overpass (Huijser et al., 2009).	Highly variable (e.g. \$65,000-\$333,000 per mile road length), depending on the technology topography, curvature, and access roads (Huijser et al., 2009; Pers. comm. Deb Wambach, Montana Department of Transportation). However, because the life span of technological equipment is much shorter (e.g. 10 yrs) than for fences (20-25 yrs) and concrete structures (75-80 yrs), the life cycle costs of detection systems may be higher than for fences in combination with crossing structures.
Application	All roads, but access roads, driveways and other access points require attention.	All roads, but access roads, driveways and other access points require attention. In addition, easements may be required to ensure the habitat quality at both sides of wildlife crossing structures.	Lower volume roads only because of the potential for sudden stops and rear-end collisions (do not use on roads with >15,000 vehicles per day, perhaps <5,000 vehicles per day is most acceptable).
Risk assessment	Fence designs for large mammals as well as many small animal species groups are well established. Fence system projects should be regarded as low risk.	Fence designs for large mammals as well designs for many small animal species groups are well established. Guidelines exist for crossing structure locations, structure type, dimensions, and spacing. Fence and crossing structure projects should be regarded as low to moderate risk.	While some animal detection systems are reliable in detecting large mammals and effective in reducing collisions, many systems are removed after a few years, because of technical problems, management or financial problems, or insufficient resources for maintenance (Huijser et al., 2015b). Animal detection system projects should be regarded as high risk.

6.2. Practical Guidelines for Wildlife Fences

Wildlife fences reduce collisions with large mammals by 80-100% as long as (Huijser et al., 2015a; 2016):

- The fences are designed for the target species' ability to jump, climb, and dig, as well as their strength.
- There is expert oversight during the construction of the fences, especially when the terrain is uneven, if the fences cross streams or other water bodies, and where the fences connect to wildlife underpasses or overpasses.
- There is a fence inspection and fence maintenance program in place.
- Fences are constructed over relatively long distances so that potential fence end effects are diluted, and the fences reach their full potential in reducing collisions. The fences need to cover the length of the hot spot, as well as buffer zones adjacent to the hot spot, but the habitat and topography of a specific mitigation site is also important to consider. In general, for large mammals such as deer, fences along road sections that are at least 3 miles (5 km) long almost always reduce collisions with large wild mammals by at least 80%.

For large ungulates in North America, 8 ft (2.4 m) high mesh wire fencing with wooden posts is the most frequently used fence type to keep animal species such as white-tailed deer, mule deer, elk, and moose off the road (Huijser et al., 2015a). For species that can climb a fence with large meshes or wooden posts (e.g. black bears, mountain lions), smaller mesh sizes, metal posts, and overhangs at the top of the fence are sometimes used. To discourage animals from digging under the fence (e.g. coyotes) sometimes dig barriers are installed (Huijser et al., 2008; Clevenger & Huijser, 2011; Huijser et al., 2015a). Should other species groups such as amphibians and reptiles be a concern as well, there are specialized amphibian and reptile fences (including plastic sheets) available that can be attached to a standard ungulate fence.

Wildlife fencing is most effective if implemented over relatively long distances (e.g. at least 5 km (3.1 miles)) (Huijser et al., 2016). If no or relatively short fencing is provided, animals that approach the road section at or near the safe crossing opportunity may simply walk to the fence end and cross at grade. This means that relatively short sections of wildlife fencing (e.g. less than 5 km (3.1 miles) are, on average, less effective and more variable in reducing wildlife-vehicle collisions than long sections of wildlife fencing (e.g. at least 5 km (3.1 miles long)) (e.g. Huijser et al., 2016). Short sections of wildlife fencing may partially relocate wildlife-vehicle collisions rather than substantially (>80% reduction) reduce them.

The wildlife fencing should at a minimum cover the full length of a hot spot on both sides of the road. However, if the fence ends at the end of a road section that has been identified as a hot spot, a substantial portion of the animals that would have crossed at the hot spot barely have to go out of their way to cross at-grade at one of the two fence ends rather than through a safe crossing opportunity in the mitigated hot spot. This may then result in a slight shift in the location of a hot spot rather than a real and substantial reduction in wildlife-vehicle collisions. Therefore, a buffer zone is recommended with additional fences extending from the two ends of a hot spot. The wildlife fences continue in this buffer zone and make it more energetically expensive ("costly") for the animals to walk to a fence end and cross at grade.

The length of the buffer zone can be based on the home range size of the target species. The average diameter of the home range of a mule deer may be about 2,400 m (1.49 mi) (see section 6.4). Therefore, if a mule deer would have the center of its home range at the edge of a hot spot, it may still easily travel 1,200 m (0.75 mile), suggesting that the buffer zone for mule deer should extend at least 1,200 m (0.75 mile) from the end of a hot spot. The authors of this report suggest a buffer zone of about 1,600 m (1.0 mile) extending from both ends of a hot spot.

In multifunctional landscapes, there are typically side roads, driveways and other access points from the highway. Depending on the type of access, the frequency of use by humans, and the target species, gates, wildlife guards (similar to cattle guards), electric mats or conductive concrete can help keep the target species out of the fenced road corridor at access points and at fence ends (Huijser et al., 2015a). Nonetheless, it is always possible that animals end up inside the fenced road corridor. Therefore, escape opportunities should be provided. Wildlife jump-outs or escape ramps allow wildlife that is trapped in the fenced road corridor to walk up to the height of the fence and then jump down to the safe side of the fence. The optimal jump-out height for mule deer is probably around 1.5-1.6 m (5-6 ft). Adding a horizontal bar at the top of the jump-out may help make it more difficult for animals to use the jump-out to enter the fenced road corridor.

While fences can be very effective in reducing collisions with large wild mammals, it is considered bad practice to increase the barrier effect of roads and traffic for wildlife without also providing for effective safe crossing opportunities. Safe crossing opportunities should be located in the actual hot spot, but if there is additional information of relatively large numbers of animals that cross the road successfully in the buffer zone, additional safe crossing opportunities may need to be considered in the buffer zone as well.

6.3. Practical Guidelines for Animal Detection Systems

At relatively low traffic volumes (e.g. < 3,000 vehicles/day) one may consider animal detection systems or gaps in a wildlife fence, with or without an animal detection system as a measure to reduce collisions with large wild mammals. However, at-grade crossing opportunities are not necessarily "safe" as it still puts wildlife on the same surface as the vehicles. In addition, the barrier effect of the transportation corridor is not reduced by providing at-grade crossing opportunities (review in Huijser et al., 2015b). Nonetheless, should these at-grade crossing opportunities be implemented, advisory or mandatory speed limit reduction and traffic calming measures (e.g. speed bumps or bulb outs), and measures that encourage the animals to cross the road straight (e.g. wildlife guards or electric mats or conductive concrete embedded in the road on either end of the gap) may be important to achieving a substantial reduction in large mammalvehicle collisions. Animal detection systems may also be used at gaps in fences, but these systems are still mostly experimental rather than a robust mitigation measure that can be expected to function as intended immediately after installation. Animal detection systems can also be implemented as a stand-alone mitigation measure and can also substantially reduce collisions with large mammals (range 33-97%) (Huijser et al., 2015b). Note that while animal detection systems can substantially reduce collisions with large mammals, they do not make it any easier for animals to cross a road (Huijser et al., 2015b). To get to the other side of the

highway, animals still must cross an open area with unnatural substrate and avoid the vehicles that drive on the road. Therefore, animal detection systems should only be considered if reducing collisions with large mammals is the only objective, and they should not be considered for small species such as amphibians and reptiles, or if providing safe crossing opportunities and increasing habitat connectivity is also an objective.

6.4. Practical Guidelines for Wildlife Crossing Structures

For relatively high traffic volume (>15,000 vehicles/day) a physical separation of vehicles and wildlife is almost always desirable. As it is, high-volume highways are a near absolute barrier to many species even without fences. The permeability of a highway decreases exponentially with increasing traffic volume; animals become more and more reluctant to cross the highway (Dodd et al., 2007). With high traffic volumes, even if there would be at-grade crossing opportunities at gaps in the fences, they would likely not or barely be used.

Safe crossing opportunities require a physical separation of vehicles and wildlife. This can be achieved by providing wildlife crossing structures (i.e. underpasses and overpasses) (Clevenger & Huijser, 2011). The combination of wildlife fences and wildlife crossing structures is the most effective and robust mitigation measure package available that can achieve the two objectives of improving human safety and reducing direct wildlife mortality, and keeping highways permeable or making them more permeable to wildlife. Besides keeping animals off the highway, fences can also funnel wildlife movements to wildlife crossing structures (Dodd et al., 2007; Gagnon et al., 2010).

These wildlife crossing structures should be carefully planned, designed, and placed. In general, wildlife crossing structures should be:

- Designed with the target species in mind (type, dimensions).
- Located where the target species are willing to come close to the highway.
- Spaced "sufficiently" close together (not exceed a certain distance between crossing structures).

The authors of this report distinguished seven different types of safe crossing opportunities for potential implementation on and along the roads in the study area (Table 20). Note that there are other types of crossing structures (e.g. for amphibians), but these are not included in this report because this report primarily focuses on large mammals and most amphibians and reptiles (e.g., snakes) are also able to pass through a standard ungulate fence. Nonetheless, should amphibian or reptile crossings be installed, specific precast products are available that allow for soil and air temperature and humidity inside the tunnels that is similar to outside the tunnels. Furthermore, structures that are suitable for large terrestrial mammals can also be made suitable for amphibians and reptiles by providing suitable habitat, including cover and water or wet areas.

Similarly, aquatic or semi-aquatic species are likely to use a crossing opportunity if a wildlife underpass is located at a stream or river crossing. Stream characteristics and stream dynamics must be carefully evaluated to ensure that the conditions inside the crossing structure are and

remain similar to that of the stream up- and downstream of the structure. Such parameters include water velocity, variability in water velocity, erosion of substrate inside the crossing structure, or up- and downstream of the structure, and the implications of high and low water events, including debris and potential maintenance issues.

If terrestrial animals are to use underpasses associated with streams and rivers, a minimum path width of 0.5 m (1.6 ft) is recommended for small and medium mammals, and 2-3 m (6.6-9.8 ft) for large mammals (for both two lane and four lane highways) (Clevenger & Huijser, 2011). Furthermore, small mammals, amphibians and reptiles increase their use of wildlife underpasses and overpasses if cover (e.g. tree stumps, branches and rocks) is provided for continuous travel to the other side of the highway. One may choose to provide additional wildlife crossing structures specifically designed for the target species, as the location of stream crossings and the spacing of the structures is not necessarily consistent with the requirements of the target species.

While Table 20 classifies crossing structures based on their dimensions, there is no generally agreed upon definition of different types of crossing structures. One may also choose to modify the dimensions of an underpass based on the species of interest and the physical environment at the location of the underpass. The width (=road length) and the height of the underpasses in Table 20 (i.e. open span bridges, large mammal underpasses, medium mammal underpasses, small-medium mammal pipes) is for 2-lanes roads or two separate structures with a median in between along 4-lane roads. For one single structure along 4-lane roads, consider increasing the width and height of the underpasses.

Table 20. Suggested classification system of wildlife crossing structures.

Safe Crossing Opportunity	Dimensions (as seen by the animals)	Safe Crossing Opportunity	Dimensions (as seen by the animals as they approach the crossing structure)
Wildlife overpass	50-70 m (164-230 ft) wide	Medium mammal underpasses	0.8-3 m (2.6-9.8 ft) wide, 0.5-2.5 m (1.6-8.2 ft) high
Open span bridge	12-30 m (39-98 ft) wide, ≥5 m (16 ft) high	Small- medium mammal pipes	0.3-0.6 m (1.0-2.0 ft) in diameter
Arboreal bridge	Rope bridge connecting canopy on both sides of road	Animal Detection system	n/a
Large mammal underpass	7-8 m (23-26 ft) wide, 4-5 m (13-16 ft) high		

Table 21 provides an overview of the suitability of the seven different types of safe crossing opportunities for the medium and large mammal species that are known to occur in California.

When evaluating the suitability, the authors assumed no human co-use of the crossing opportunities. The suitability of the different types of safe crossing opportunities is not only influenced by the size of the species, but also by species-specific behavior. For some species there is little or no information on what type and dimension of crossing structure is considered suitable. However, for some species the researchers can make an educated guess. For example, ringtails are known to climb trees, nest in tree cavities, suggesting that arboreal bridges are a suitable type of crossing structure for this species.

Table 21. Suitability of different types of mitigation measures for selected species (for 2-3 lane highways [25-35 m (82-115 ft)] wide road without median).

● Recommended/Optimum solution; ● Possible if adapted to species' specific needs; ⊗ Not recommended; ? Unknown, more data required; — Not applicable (Clevenger & Huijser, 2011; O'Brien et al., 2013; Huijser et al., preliminary data; Clevenger, unpublished data).

, p. c	Wildlife overpass	Arboreal crossing	Open span bridge	Large mammal underpass	Medium mammal underpass	Small- medium mammal underpass	Animal detection system
Mammals							
Squirrels	•	•	•	•	8	8	8
Porcupine	•	?	•	•	?	8	8
Beaver	0	8	•	•	?	?	8
Opossum	•	•	•	•	•	•	8
Raccoon	•	8	•	•	•	?	8
Ringtail	•	•	•	•	0	0	8
Skunks	•	8	•	•	•	?	8
Fisher	•	•	•	0	0	0	8
Wolverine	•	8	•	?	?	8	8
Badger	•	8	•	•	•	•	8
Bobcat	•	8	•	•	•	•	8
Mountain lion	•	8	•	•	8	8	0
Kit fox	•	8	•	•	0	0	8
Grey fox	•	8	•	•	•	•	8
Red fox	•	8	•	•	•	•	8
Coyote	•	8	•	•	•	•	8
Deer spp.	•	8	•	•	8	8	•
Elk	•	8	•	0	8	8	•
Pronghorn	•	8	?	8	8	8	•
Bighorn sheep	•	8	•	0	8	8	•
Black bear	•	8	•	•	8	8	•
Amphibians	0	8	0	0	0	0	8
Reptiles	0	8	0	0	0	0	8

When wildlife fencing is installed alongside a road, the barrier effect of the road corridor is increased. Depending on the species concerned, a wildlife fence may be an absolute or a near complete barrier. Such barriers in the landscape are to be avoided as they isolate animal populations, and smaller and more isolated populations have reduced population survival probability. Therefore, when a wildlife fence is installed, safe crossing opportunities for wildlife should be provided for as well. This section discusses suggestions for the appropriate distance between safe crossing opportunities.

The spacing of safe crossing opportunities for wildlife can be calculated in more than one way and is dependent on the goals one may have. Examples of possible goals are:

- Provide permeability under or over the road for ecosystem processes, including but not restricted to animal movements. Ecosystem processes include not only biological processes, but also physical processes (e.g. soil processes, hydrology).
- Allowing a wide variety of species to change their spatial distribution drastically, for example in response to climate change.
- Maintaining or improving the population viability of selected species based on their current spatial distribution. This includes striving for larger populations with a certain degree of connectivity between populations (including allowing for successful dispersal movements).
- Providing the opportunity for individuals (and populations) to continue seasonal migration movements (e.g. mule deer in certain regions).
- Allowing individuals, regardless of the species, that have their home ranges on both sides
 of the highway to continue to use these areas. This may result in a road corridor that is
 permeable for wildlife, at least to a certain degree, at least for the individuals that live
 close to the road.

A further complication is that individuals that disperse, that display seasonal migration, or that live in the immediate vicinity of a road may display differences in behavior with regard to where and how they move through the landscape; how they respond to roads, traffic, and associated barriers (e.g. wildlife fencing); and their willingness to use safe crossing opportunities. For example, dispersing individuals may originate far away from the areas where one is used to seeing them; they may not move through habitat that we may expect them to be in; they typically travel long distances, much further and quicker compared to resident individuals; but successful dispersers may also stay away from roads and traffic and other types of human disturbance that they are unfamiliar with.

Safe crossing opportunities may not be encountered by dispersing individuals as they are new to the area and are not familiar with their location, and when confronted with a road or associated wildlife fence, they may return or change the direction of their movement before they encounter and use a safe crossing opportunity. Furthermore, if dispersing individuals do encounter a safe crossing opportunity, they may be more hesitant to use them compared to resident individuals that not only know about their location, but that also have had time to learn that it is safe to use them. Since dispersal can be a relatively rare phenomenon, one may not be able to afford a dispersing individual to give up and turn back. Knowledge on the requirements (e.g. structure

type, structure dimensions, interval between structures) for dispersing individuals versus requirements for residential individuals is currently not available.

Full-scale population viability analyses can be very helpful in comparing the effectiveness of different configurations of safe crossing opportunities. For this report the authors chose a simpler approach. Mule deer may have an average home range of about 450 hectares (ha) (1,112 acres) (diameter circular home range = 2,394 m (1.49 mile); 443 ha (1,095 acres) in summer, 500 ha (1,236 acres) in winter; Kie et al., 2002). The distance between safe crossing opportunities for mule deer was set to be equal to the diameter of the home range, about 2,400 m (1.49 mile) (Figure 20). This allows individuals that have the center of their home range on the road to have access to at least one safe crossing opportunity.

However, individuals that may have had their home range on both sides of the road do not necessarily have access to a safe crossing opportunity (Figure 21). Finally, this approach assumed homogenous habitat and distribution of the individuals and circular home ranges, while in reality habitat and habitat quality may vary greatly, causing variations in density of individuals and irregularly shaped home ranges. The authors of this report would like to emphasize that this approach does not necessarily result in viable populations for mule deer, and that not every individual that approaches the road and associated wildlife fence will encounter and use a safe crossing opportunity. Nonetheless, a suitable crossing structure for mule deer once every 2,400 m (1.49 mile) should result in "substantial connectivity" for this species.

Crossing structures that are suitable for mule deer can also be suitable or made to be suitable for many other species. For example, when a mule deer crossing structure is combined with a stream crossing, it may not only be suitable for many terrestrial animal species, but also for species that depend on aquatic or riparian habitat. Cover inside or on top of crossing structures is especially Important for small animal species (e.g. amphibians, reptiles, small mammals). Smaller species may also still be able to cross at grade as the meshes of a standard fence for large ungulates are typically wide enough for small mammals, amphibians, and snakes to pass through. If road mortality is to be reduced for smaller species too, smaller mesh fencing or smooth plastic sheets should be attached to the lower portion of a large mammal fence (see section 6.2).

Because the home range for smaller-bodied species (e.g., amphibians and reptiles) may be much smaller than for mule deer (see e.g. Huijser & Begley, 2012), additional crossing opportunities (in addition to the safe crossing opportunities for mule deer) may have to be provided (Figure 20). These crossing opportunities can typically be much smaller when designed for species smaller than deer. The approach described above is not necessarily the only approach or the approach that addresses the barrier effect of the road corridor and associated fencing sufficiently for all species concerned. However, the authors do think that this approach would at least be consistent, practical, based on available ecological data, and likely to result in considerable permeability of the road corridor and associated wildlife fencing for mule deer.



Figure 20: Schematic representation of home ranges for two theoretical species projected on a road and the distance between safe crossing opportunities (distance is equal to the diameter of their home range).

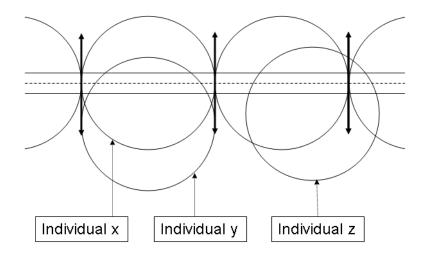


Figure 21: Schematic representation of home ranges and interval between safe crossing opportunities. Schematic representation of home range for an individual (x) that has the center of its home range on the center of the road (access to two safe crossing opportunities), an individual (y) that has the center of its home range slightly off the center of the road exactly in between two safe crossing opportunities (no access to safe crossing opportunities), and an individual (z) that has the center of its home range slightly off the center of the road but not exactly in between two safe crossing opportunities (access to one safe crossing opportunity).

Another way to decide on "appropriate distance" between safe crossing opportunities is to evaluate what the spacing is for wildlife crossing structures on other wildlife highway mitigation projects. The average spacing for large mammal crossing structures in Montana (US Hwy 93 North and South), I-75 in Florida, SR 260 in Arizona, Banff National Park in Canada, and ongoing reconstruction on I-90 in Washington State is about 1.9 km (1.2 mile) (range for the average spacing of structures in these individual areas is 0.8-2.9 km (0.50-1.80 mile)). However, the 1.9 km (1.2 mile) spacing is simply what people have done elsewhere, and it is not necessarily based on what may be needed ecologically, the requirements for the target species in one area may be different from what is needed in another area.

6.5. Mitigation Recommendations for the Top Crash and Carcass Hot Spots Per District

In Chapter 4 the researchers identified deer-vehicle crash hot spots and mule deer carcass hot spots while Chapter 5 documented the prioritization process. In this section the researchers list the recommendations for the top deer-vehicle crash and mule deer carcass hot spots in each Caltrans district. We strived for ranking the top five hot spots within each district. However, some districts had fewer hot spots (see Chapter 5). In addition, some other districts had more than five hot spots that met the criteria for hot spot identification (see Chapter 4), and the authors of this report included all hot spots in the ranking process as the authors had no way to identify which were the "worst" five without initiating the ranking process. Note that the researchers described the individual hot spots based on the Kernel density category, the length of the hot spots, the number of lanes (based on satellite images), whether potential existing structures are present that may also serve as a wildlife crossing after potential modifications (based on satellite images), and the traffic volume (Annual Average Daily Traffic (AADT; Caltrans, 2019). Small underpasses (e.g. drainage culverts or small box culverts) were not reliably visible on the satellite images. However, structures that are considered suitable for mule deer (at least 7-8 m [23-26 ft] wide, 4-5 m [13-16 ft] high) were visible on the satellite images, and that was most relevant for this project.

Should Caltrans consider implementing mitigation measures at one or more of these hot spots, the researchers advise the following:

- 1. Focus on hot spots with a relatively high number of collisions first. If there are less than 10 reported deer-vehicle crashes or less than 10 reported mule deer carcasses in a hot spot, implementation of mitigation measures is relatively risky compared to sites that have greater collision numbers. The identification of hot spots with low numbers is less robust than the identification of hot spots with higher numbers. The authors of this report suggest minimizing the risk of investing in mitigation measures by focusing on hot spots that are likely to be a substantial and consistent hot spot rather than a less important hot spot or a hot spot that may have been wrongly identified because of variations in the number of collisions.
- 2. Interview law enforcement personnel and road maintenance personnel in the first phase of exploring the potential implementation of mitigation measures. Get confirmation that

- it is indeed a "bad spot" for deer-vehicle collisions, and get confirmation about the exact road section (start and end points).
- 3. Some hot spots appear particularly difficult or costly to mitigate. The presence of 8-12 lanes of traffic, frontage roads, intersections, private lands, residential and commercial development, etc. all make it more challenging to effectively mitigate a hot spot. These types of challenges are "ignored" in the ranking of the hot spots (Tables 22 and 23). However, the challenges of each hot spot should be carefully weighed when proceeding with the planning, design and implementation of mitigation measures.
- 4. Carefully evaluate what species other than mule deer may require mitigation for direct road mortality or the barrier effect along the road section that is considered for mitigation. Consult spatial and biological databases, interview representatives from natural resource management agencies, interview people with local knowledge and experience. Modify or add to the list of target species as it may well influence the design of the mitigation measures.
- 5. In general, the first choice or recommendation for mitigating a hot spot is a wildlife fence in combination with designated wildlife crossing structures. Implement large mammal fences (2.4 m high (8 ft)) along the full length of a hot spot and buffer zones that span an additional 1,600 m (1.0 mile) from each end of the hot spot. As a general principle, provide a crossing structure that is suitable for mule deer (at least 7-8 m (23-26 ft) wide, 4-5 m (13-16 ft) high) once every 2,400 m (1.49 mile) in the fenced road section. With reduced ambition levels (i.e., address only collisions with large mammals, do not provide safe crossing opportunities for wildlife) animal detection systems are suggested as a second choice for road sections with less than 5,000 vehicles per day (Table 22 and 23).
- 6. If there were existing structures in a hot spot, identified through satellite images, these were noted in the tables. However, structures primarily designed for motorized vehicles were not listed. Nonetheless, very long bridges with only small or unpaved roads were included as an existing structure that may be adapted to also allow for wildlife use. In addition to connecting these structures to wildlife fences, the structures may need some modifications to make them suitable for wildlife use. These modifications will likely vary between the structures, and some structures may not need any modifications.
- 7. In general, structures for mule deer should be considered about every 2,400 m (1.49 mile) (see section 6.4). This means that long hot spots may need multiple crossing structures. These structures can be any combination of existing structures originally built for other purposes and designated wildlife crossing structures. The structures listed in Table 22 and 23 are restricted to the hot spots. Fences may extend into adjacent buffer zones, and there may be additional existing structures in those areas. Tying these existing structures into the wildlife fence and allowing potential wildlife use through these structures makes sense, as long as it is compatible with the primary use of a structure and the land use in the areas surrounding the structure.

Table 22: The mitigation recommendations for the top hot spots based on analyses for deer-vehicle crashes per Caltrans district.

Hot	D:a				Total	Lanes	Evicting			Mitigation suggestions	
spot ID#	Dis- trict	County	Nearby town	Highway	length (mi)	Lanes (n)	Existing structure	AADT	Rank	1st choice	2nd choice
1a	1	Del Norte	Crescent City	US Hwy 101	0.6	2	No	4,450	2	Fence, designated structures	ADS
1b	1	Humboldt	Orick	US Hwy 101	0.8	2	Yes	4,050	1	Fence, designated structures	ADS
1d	1	Humboldt	Redway	US Hwy 101	0.4	4	No	8,100	3	Fence, designated structures	
1e	1	Humboldt	Redway	US Hwy 101	0.2	5	No	7,650	4	Fence, designated structures	
1f	1	Humboldt	Redway	US Hwy 101	0.1	4	No	6,850	5	Fence, designated structures	
2a	2	Siskiyou	Hornbrook	I-5	2.5	4	Yes	16,200	4	Fence, modify existing 70-80 m bridge	
2e	2	Tehama	Red Bluff	I-5	0.5	5	Yes	42,750	2	Fence, modify existing 42 m bridge	
2f	2	Tehama	Red Bluff	I-5	0.5	4	Yes	38,500	2	Fence, modify existing 222 m bridge	
2g	2	Lassen	Susanville	US Hwy 395	5.6	3	Yes	6,950	1	Fence, upsize existing culverts and livestock underpass, designated structures	
2h	2	Siskiyou	Black Butte	I-5	0.4	4	No	24,800	3	Fence, designated structures	
3a	3	El Dorado	Placerville	US Hwy 50	0.9	4	No	27,450	3	Fence, designated structures	
3b	3	El Dorado	Perks Corner	US Hwy 50	3.7	4	Yes	10,600	2	Fence, upsize existing livestock underpass, designated structures	
3c	3	El Dorado	Shingle Springs	US Hwy 50	3.4	6	No	66,200	4	Fence, designated structures	
3d	3	Sacramento	Rancho Murieta	Hwy 16	0.3	2	No	11,250	1	Fence, designated structures	
3j	3	Nevada	Higgins Corner	Hwy 49	1.4	2	Yes	23,200	4	Fence, modify existing 47 m bridge	
4c	4	San Mateo	Highlands- Baywood Park	I-280	2.2	10	Yes	129,000	2	Fence, modify existing 501 m bridge	
4d	4	San Mateo	Woodside	I-280	6.4	8	Yes	114,000	1	Fence, modify existing 30 and 34 m bridges	
4f	4	Santa Clara	Los Altos Hills	I-280	0.4	6	No	131,500	4	Fence, designated structures	
4g	4	Contra Costa	Condit	Hwy 24	0.2	8	No	209,500	5	Fence, designated structures	
4h	4	Contra Costa	Orinda	Hwy 24	0.4	8	No	188,000	3	Fence, designated structures	
5a	5	San Luis Obispo	Templeton	US Hwy 101	0.5	4	Yes	58,850	1	Fence, modify existing 51 and 31 m bridges	
6a	6	Madera	Oakhurst	Hwy 41	0.5	3	No	19,000	1	Fence, designated structures	
6b	6	Madera	Oakhurst	Hwy 41	0.3	2	No	19,000	2	Fence, designated structures	
7a	7	Los Angeles	Glendale	Hwy 134	0.4	8	No	209,500	4	Fence, designated structures	
7b	7	Los Angeles	Glendale	Hwy 2	2.8	9	No	124,500	3	Fence, designated structures	
7c	7	Los Angeles	Sherman Oaks	I-405	0.4	12	No	253,500	5	Fence, designated structures	
7d	7	Ventura	Casitas Springs	Hwy 33	0.4	3	No	26,500	2	Fence, designated structures	

Hot	Dis-				Total	Lanes	Existing			Mitigation suggestions		
spot ID#	trict	County	Nearby town	Highway	length (mi)	(n)	structure	AADT	Rank	1st choice	2nd choice	
7e	7	Ventura	Moorpark	Hwy 118	0.2	5	No	79,500	1	Fence, designated structures		
8a	8	San Bernardino	Crestline	Hwy 18	1.1	4	No	16,550	4	Fence, designated structures		
8b	8	San Bernardino	Silverwood Lake	Hwy 138	0.2	2	No	2,925	2	Fence, designated structures	ADS	
8c	8	San Bernardino	Running Springs	Hwy 330	2.6	2	No	11,500	1	Fence, designated structures		
8d	8	San Bernardino	Running Springs	Hwy 18	0.4	2	No	5,750	3	Fence, designated structures		
8e	8	San Bernardino	Skyforest	Hwy 18	0.2	2	No	5,750	5	Fence, designated structures		
9a	9	Mono	Bridgeport	US Hwy 395	1	2	No	3,050	1	Fence, designated structures		
9b	9	Mono	Whitmore Hot Spr.	US Hwy 395	0.7	4	No	7,250	2	Fence, upsize existing culvert		
9c	9	Mono	Grant Lake	US Hwy 395	0.3	4	No	4,625	3	Fence, designated structures	ADS	
10a	10	Mariposa	Bootjack	Hwy 49	1.6	2	Yes	5,200	2	Fence, modify existing 65 m bridge		
10b	10	Calaveras	San Andreas	Hwy 49	0.3	2	Yes	7,250	1	Fence, modify existing 32 m bridge		
1.1	1.1	c D.	W G :		0.6	2	NY.	1.400	,		1.00	
11a	11	San Diego	Warner Springs	Hwy 79	0.6	2	No	1,400	1	Fence, designated structures	ADS	
11b 11c	11	San Diego San Diego	Santa Ysabel Lake Cuyamaca	Hwy 78	2.8 0.4	2	No No	4,425 1,650	3	Fence, designated structures Fence, designated structures	ADS	
11d	11	San Diego San Diego	La Jolla	Hwy 79 I-5	0.4	12	No	1,630	4	Fence, designated structures Fence, designated structures	ADS	
Hu	11	Sall Diego	La JUlia	1-J	0.3	12	110	1 /4,500	4	rence, designated structures		
12a	12	Orange	Las Flores	Hwy 241	1.6	4	Yes	6,900	2	Fence, modify existing 46 m bridge		
12b	12	Orange	Peters Cany. Res.	Hwy 261	0.3	5	Yes	32,200	3	Fence, modify existing 68 m bridge		
12c	12	Orange	Villa Park	Hwy 241	0.3	9	No	47,800	3	Fence, designated structures		
12d	12	Orange	Laguna Woods	Hwy 73	0.2	7	No	62,700	1	Fence, designated structures		

Table 23: The mitigation recommendations for the top hot spots based on analyses for mule deer carcasses per Caltrans district.

	25. 111	c mitigation	CCOMMICHUA			Juis Das	cu on ana	19868 101	inuic uc	Mitigation	
Hot spot	Dis-				Total length	Lanes	Existing			Mitigation	2nd
ID#	trict	County	Nearby town	Highway	(mi)	(n)	structure	AADT	Rank	1st choice	choice
1A	1	Humboldt	Eureka	US Hwy 101	2.3	4	yes	24150	1	Fence, upgrade culvert, designated structures	
1B	1	Humboldt	Fortuna	US Hwy 101	4.0	4	yes	24000	2	Fence, modify existing 139 m bridge	
1F	1	Mendocino	Little River	Hwy 1	0.4	2	Yes	3750	4	Fence, modify existing 21 m bridge	ADS
1I	1	Lake	Blue Lakes	Hwy 20	0.2	2	No	9650	3	Fence, designated structures	
1K	1	Lake	Clearlake Oaks	Hwy 20	0.8	2	No	8150	5	Fence, designated structures	
										Fence, upsize existing culverts and livestock underpass,	
2A	2	Siskiyou	Yreka	I-5	6.3	4	Yes	19000	1	designated structures	
2D	2	Siskiyou	Dunsmuir	I-5	1.1	4	No	20350	2	Fence, designated structures	
2G	2	Siskiyou	Macdoel	US Hwy 97	0.2	2	No	1190	3	Fence, designated structures	ADS
2H	2	Modoc	Hannchen	Hwy 139	0.6	2	No	1625	5	Fence, designated structures	ADS
2I	2	Modoc	Hannchen	Hwy 139	0.3	2	No	1625	4	Fence, designated structures	ADS
	3	Insufficient d	ata								
4.4	4	c M	Highlands-	11 02	1.7	4	NT.	77200	2		
4A	4	San Mateo	Baywood Park	Hwy 92	1.7	4	No	77200	3	Fence, designated structures	-
4B	4	Santa Clara	Los Altos Hills Mission San	I-280	2.1	8	No	131500	3	Fence, designated structures	
4C	4	Alameda	Jose	I-680	0.5	6	No	155400	4	Fence, designated structures	
10	·	Contra		1 000	0.5	0	110	133100	· ·	1 enes, designated structures	
4D	4	Costa	Orinda	Hwy 24	0.8	8	No	188000	1	Fence, designated structures	
455		Contra		* ***	0.6			4.50.50	_		
4E	4	Costa	Alamo	I-680	0.6	6	No	153850	5	Fence, designated structures	
	_										
	5	Insufficient d	ata I								
C A) (1	0.11	TT 41	10.7	2	NT.	10000			
6A	6	Madera	Oakhurst	Hwy 41	19.7	2	No	19000	2	Fence, designated structures	+ DG
6B	6	Tuolumne	Three Rivers	Hwy 198	0.5	2	Yes	4525	3	Fence, modify existing 60 m bridge	ADS
6C	6	Tuolumne	Three Rivers	Hwy 198	4.4	2	Yes	3175	<u>l</u>	Fence, modify existing 61 m bridge, designated structures	ADS
6D	6	Kern	Alta Sierra	Hwy 155	2.2	2	No	355	4	Fence, designated structures	ADS
		T 00 : . 1									
	7	Insufficient d	ата								
	-	x 00									
	8	Insufficient d	ata								
OD	0		XX7 11	TIGIT 207	0.5		37	2550			A.D.G
9B	9	Mono	Walker	US Hwy 395	8.5	2	Yes	3550	3	Fence, upsize existing culverts, designated structures	ADS
9C	9	Mono	Walker	US Hwy 395	2.4	2	No	3425	5	Fence, designated structures	ADS

Hot					Total					Mitigation	
spot ID#	Dis- trict	County	Nearby town	Highway	length (mi)	Lanes (n)	Existing structure	AADT	Rank	1st choice	2nd choice
9D	9	Mono	Sonora Junction	US Hwy 395	11.1	2	Yes	3425	2	Fence, modify existing bridge 41 m, upsize existing culverts, designated structures	ADS
9E	9	Mono	Mono City	US Hwy 395	6.2	4	Yes	3350	4	Fence, upsize existing culverts, designated structures	ADS
9F	9	Mono	Whitmore Hot Springs	US Hwy 395	15.6	4	Yes	7200	1	Fence, modify existing bridge 23 m, upsize existing culverts, designated structures	
10A	10	Amador	Pine Grove	Hwy 88	22.6	2	No	8250	1	Fence, designated structures	
10B	10	Amador	Jackson	Hwy 49	5.8	2	No	8100	2	Fence, designated structures	
10C	10	Tuolumne	Mono Vista	Hwy 108	15.4	2	Yes	3975	3	Fence, modify existing bridge 310 m, upsize existing culverts, designated structures	ADS
10D	10	Tuolumne	Moccasin	Hwy 120	3.0	2	Yes	4425	4	Fence, modify existing bridge 105 m, upsize existing culverts, designated structures	ADS
10E	10	Tuolumne	Groveland	Hwy 120	10.7	2	No	6225	5	Fence, designated structures	
	11	Insufficient d	ata								
12A	12	Orange	Peters Canyon Reservoir	Hwy 241	1.8	6	Yes	40150	4	Fence, modify existing bridge 403 m, upsize existing culverts, designated structures	
12B	12	Orange	Las Flores	Hwy 241	2.0	4	Yes	6900	5	Fence, modify existing bridge 45 m, upsize existing culverts, designated structures	
12C	12	Orange	San Joaquin Hills	Hwy 73	2.5	8	Yes	67650	1	Fence, modify existing bridges 96 m, 49 m, upsize existing culverts	
12D	12	Orange	Peters Canyon Reservoir	Hwy 241	0.4	7	Yes	47800	3	Fence, upsize existing culverts	
12E	12	Orange	Rancho Mission Viejo	Hwy 74	0.4	2	No	11100	2	Fence, designated structures	

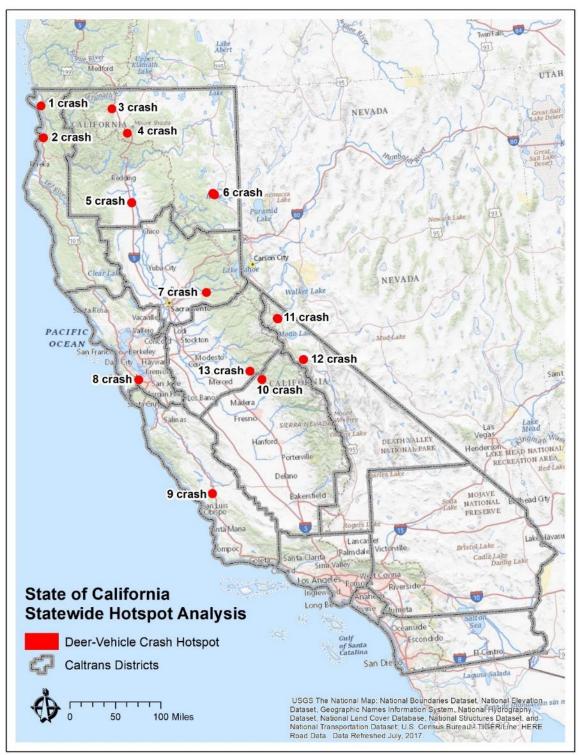
7. REFERENCES

- Abra F.D., B.M. Granziera, M.P. Huijser, K.M.P.M.d.B. Ferraz, C.M. Haddad, R.M. Paolino. 2019. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoSONE 14(4):e0215152. https://doi.org/10.1371/journal.pone.0215152
- Allen, R.E. & D.R. McCullough. 1976. Deer–car accidents in southern Michigan. Journal of Wildlife Management 40: 317–325.
- CDFW. 2018. California's deer population estimates. California Department of Fish and Wildlife. https://www.wildlife.ca.gov/Conservation/Mammals/Deer/Population
- Caltrans. 2013. Traffic manual. http://www.dot.ca.gov/hq/traffops/signtech/signdel/chp3/chap3.htm
- Caltrans. 2019. Traffic Census Program. 2017 Volumes. http://www.dot.ca.gov/trafficops/census/volumes2017/
- Clevenger, A.P. & M.P. Huijser. 2011. Wildlife Crossing Structure Handbook Design and Evaluation in North America. Department of Transportation, Federal Highway Administration, Washington D.C., USA. Available from the internet:

 http://www.westerntransportationinstitute.org/documents/reports/425259_Final_Report.pdf
- Clevenger, A. P., A. T. Ford & M. A. Sawaya. 2009. Banff wildlife crossings project: Integrating science and education in restoring population connectivity across transportation corridors. Final report to Parks Canada Agency, Radium Hot Springs, British Columbia, Canada. https://arc-solutions.org/wp-content/uploads/2012/03/Clevenger-et-al-2009-Banff-wildlife-crossings-project.pdf
- Conover, M.R. 1997. Monetary and intangible valuation of deer in the United States. Wildlife Society Bulletin 25: 298-305.
- Conover, M.R., W.C. Pitt, K.K. Kessler, T.J. DuBow & W.A. Sanborn. 1995. Review of human injuries, illnesses, and economic losses caused by wildlife in the United States. Wildlife Society Bulletin 23: 407-414.
- Cuperus, R., K.J. Canters, H.A. Udo de Haes & D.S. Friedman. 1999. Guidelines for ecological compensation associated with highways. Biological Conservation 90: 41-51.
- Dodd, N.L., Gagnon, J.W., Boe, S., Schweinsburg, R.E., 2007. Role of fencing in promoting wildlife underpass use and highway permeability. In: Irwin, C.L., Nelson, D.,
 McDermott, K.P. (Eds.), Proceedings of the 2007 International Conference on Ecology and Transportation. Center for Transportation and the Environment, North Carolina State University, Raleigh, North Carolina, USA, pp. 475–487.

- Donaldson, B.M. & N.W. Lafon. 2008. Testing an integrated PDA-GPS system to collect standardized animal carcass removal data. FHWA/VTRC 08-CR10. Virginia Transportation Research Council, Charlottesville, Virginia, USA.
- ESRI. 2018a. How Optimized Hot Spot Analysis Works. ArcMap 10.6.

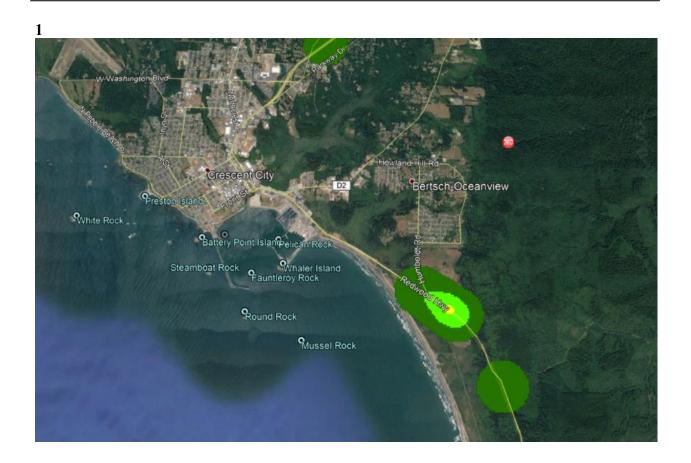
 http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/how-optimized-hot-spot-analysis-works.htm
- ESRI. 2018b. ArcGIS Desktop: Release 10.6.1. Redlands, CA: Environmental Systems Research Institute.
- Gagnon, J.W., Dodd, N.L., Sprague, S.C., Ogren, K., Schweinsburg, R.E., 2010. Preacher Canyon wildlife fence and crosswalk enhancement project evaluation. State Route 260. Final Report Project JPA 04-088. Arizona Game and Fish Department, Phoenix, Arizona, USA.
- Gomes L., C. Grilo, C. Silva & A. Mira. 2009. Identification methods and deterministic factors of owl roadkill hotspot locations in Mediterranean landscapes. Ecological Research 24(2): 355-370.
- Huijser, M.P. & J.S. Begley. 2012. Highway mitigation opportunities for wildlife in Boundary
 County, Idaho. 4W3883 Western Transportation Institute College of Engineering,
 Montana State University, P.O. Box 174250. Bozeman, MT 59717-4250, USA.
- <u>Huijser, M.P.</u> & J.S. Begley. 2014. Procedures and tools for wildlife-vehicle collision hotspot analyses; Using Caltrans District 10 as an example. Report no. 4W4337. Western Transportation Institute Montana State University, Bozeman, Montana, USA.
- Huijser, M.P. & P.J.M. Bergers. 2000. The effect of roads and traffic on hedgehog (*Erinaceus europaeus*) populations. Biological Conservation 95: 111–116.
- Huijser, M.P., J. Fuller, M.E. Wagner, A. Hardy, & A.P. Clevenger. 2007. Animal-vehicle collision data collection. A synthesis of highway practice. NCHRP Synthesis 370. Project 20-05/Topic 37-12. Transportation Research Board of the National Academies, Washington DC, USA. Available from the internet: http://www.trb.org/news/blurb_detail.asp?id=8422
- Huijser, M.P., P. McGowen, J. Fuller, A. Hardy, A. Kociolek, A.P. Clevenger, D. Smith & R. Ament. 2008. Wildlife-vehicle collision reduction study. Report to Congress. U.S. Department of Transportation, Federal Highway Administration, Washington D.C., USA. Available from the internet:


 http://www.fhwa.dot.gov/publications/research/safety/08034/index.cfm

- Huijser, M.P., J.W. Duffield, A.P. Clevenger, R.J. Ament & P.T. McGowen. 2009. Cost–benefit analyses of mitigation measures aimed at reducing collisions with large ungulates in the United States and Canada; a decision support tool. Ecology and Society 14(2): 15. Available from the internet: http://www.ecologyandsociety.org/viewissue.php?sf=41
- Huijser, M.P., A.V. Kociolek, T.D.H. Allen, P. McGowen, P.C. Cramer & M. Venner. 2015a. Construction guidelines for wildlife fencing and associated escape and lateral access control measures. NCHRP Project 25-25, Task 84, National Cooperative Highway Research Program, Transportation Research Board of the National Academies, Washington D.C., USA.
- Huijser, M.P., C. Mosler-Berger, M. Olsson & M. Strein. 2015b. Wildlife warning signs and animal detection systems aimed at reducing wildlife-vehicle collisions. pp. 198-212. In: R. Van der Ree, C. Grilo & D. Smith. Ecology of roads: A practitioner's guide to impacts and mitigation. John Wiley & Sons Ltd. Chichester, United Kingdom.
- Huijser, M.P., E.R. Fairbank, W. Camel-Means, J. Graham, V. Watson, P. Basting & D. Becker. 2016. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife-vehicle collisions and providing safe crossing opportunities for large mammals. Biological Conservation 197: 61-68.
- Kie, J.G., R.T. Bowyer, M.C. Nicholson, B.B. Boroski & E.R. Loft. 2002. Landscape heterogeneity at differing scales: Effects on spatial distribution of mule deer. Ecology 83(2): 530-544.
- O'Brien, C.J., A.B. Otto & R.A. Sweitzer. 2013. Wildlife Vehicle Collisions (WVC) Sub-group: The Sierra National Forest Highway 41 culvert Project.

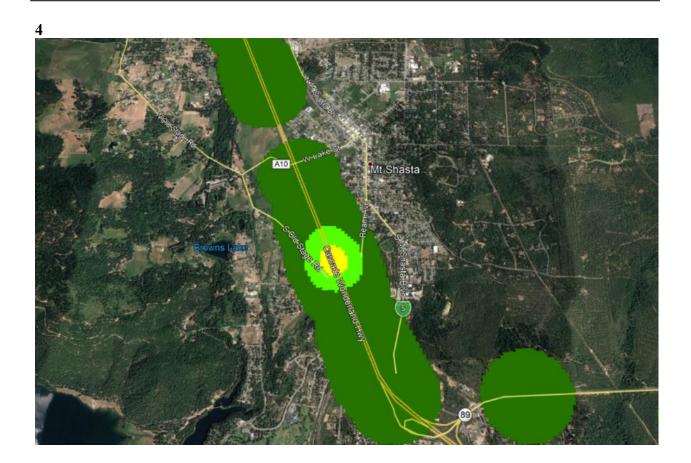
 http://snamp.cnr.berkeley.edu/static/documents/2013/03/11/WVC_CulvertProject_CJO_RAS.pdf
- Proctor, M.F. 2003. Genetic analysis of movement, dispersal and population fragmentation of grizzly bears in southwestern Canada. Dissertation. The University of Calgary, Calgary, Alberta, Canada.
- Riley, S.J. & A. Marcoux. 2006. Deer–vehicle collisions: an understanding of accident characteristics and drivers' attitudes, awareness and involvement. Research report RC-1475. Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
- Romin, L.A. & J.A. Bissonette. 1996. Deer-vehicle collisions: status of state monitoring activities and mitigation efforts. Wildlife Society Bulletin 24: 276-283.
- Silverman, B.W. 1986. Density estimation for statistics and data analysis. Chapman and Hall, New York, USA.

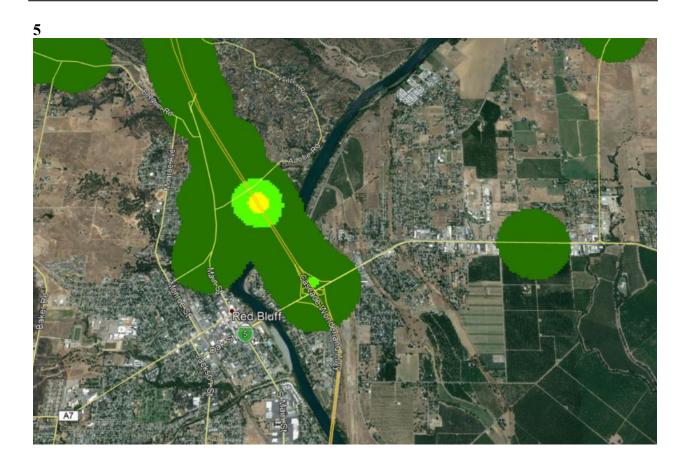
- Spencer, W.D., P. Beier, K. Penrod, K. Winters, C. Paulman, H. Rustigian-Romsos, J. Strittholt, M. Parisi & A. Pettler. 2010. California Essential Habitat Connectivity Project: A Strategy for Conserving a Connected California. Prepared for California Department of Transportation, California Department of Fish and Game, and Federal Highways Administration. Available from the internet: https://www.wildlife.ca.gov/Conservation/Planning/Connectivity/CEHC
- Tardif, L.-P. & Associates Inc. 2003. Collisions involving motor vehicles and large animals in Canada. Final report. L-P Tardif and Associates Inc., Nepean, Ontario, Canada. U.S. Fish and Wildlife Service. 2013. Critical habitat portal. http://ecos.fws.gov/crithab/
- Teixeira, F.Z., A.V.P. Coelho, I.B. Esperandio & A. Kindel. 2013. Vertebrate road mortality estimates: Effects of sampling methods and carcass removal. Biological Conservation 157: 317-323.
- Teixeira, F.Z., A. Kindel, S.M. Hartz, S. Mitchell & L. Fahrig. 2017. When road-kill hotspots do not indicate the best sites for road-kill mitigation. Journal of Applied Ecology 54: 1544-1551.
- USFWS. 2019. U.S. Fish & Wildlife Service Threatened & Endangered Species Active Critical Habitat Report. ECOS Environmental Conservation Online System. U.S. Fish & Wildlife Service. https://ecos.fws.gov/ecp/report/table/critical-habitat.html Accessed 19 April 2019.
- Van der Ree, R., C. Grilo & D. Smith (eds.). 2015. Ecology of roads: A practitioner's guide to impacts and mitigation. John Wiley & Sons Ltd. Chichester, United Kingdom.
- van der Zee, F.F., J. Wiertz, C.J.F. ter Braak, R.C. van Apeldoorn & J. Vink. 1992. Landscape change as a possible cause of the badger *Meles meles* L. decline in The Netherlands. Biological Conservation 61: 17–22.

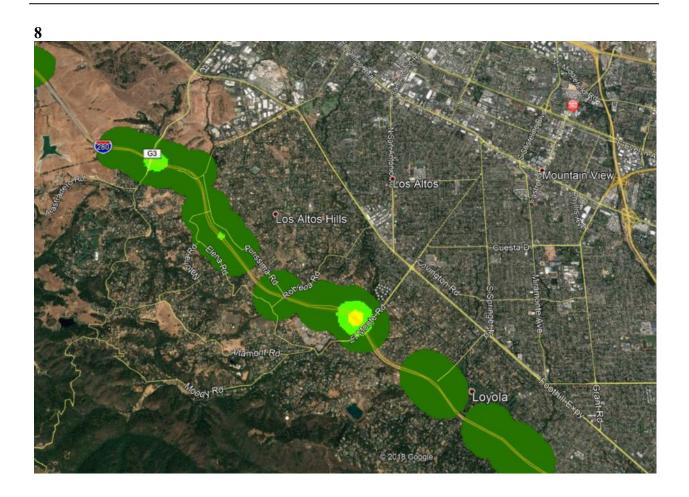

8. APPENDIX A: STATEWIDE ANALYSIS DEER-VEHICLE CRASH HOT SPOTS

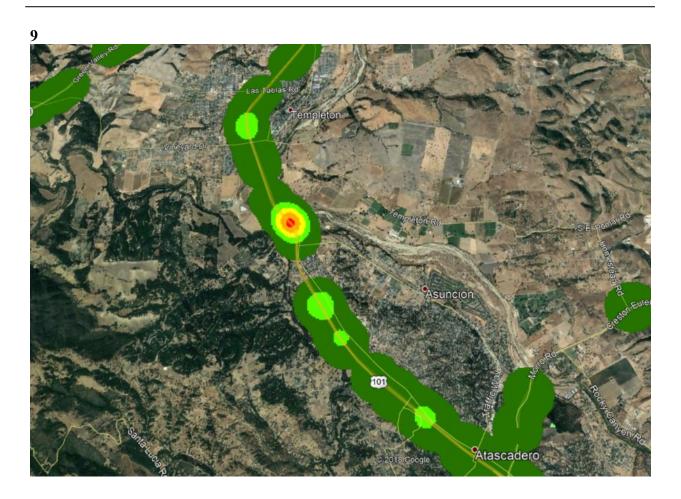


Hot spots based on statewide deer-vehicle crash data with Caltrans District boundaries (see Figure 1, page 13 for the Caltrans District numbers). The numbers correspond with the table and detailed maps of the individual hot spots on the following pages.


The "worst" hot spots based on a statewide analysis for deer-vehicle crashes in the entire state of California. Note: AADT = Annual Average Daily Traffic.

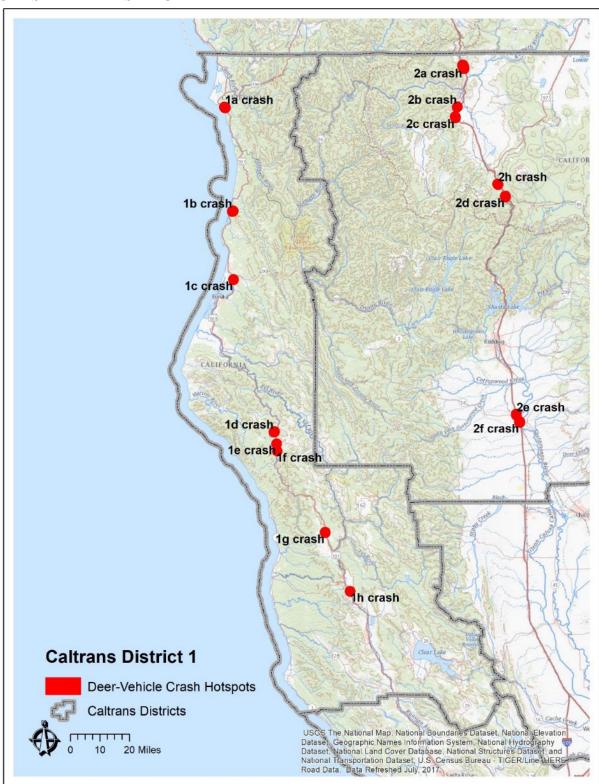

Hot spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	Most severe category	Total length (mi)	Length yellow (mi)	Length orange (mi)	Length red (mi)	Lanes (n)	Existing structure	AADT
1	1	Del Norte	Crescent City	US Hwy 101	1_DN_101_237	1_DN_101_235	yellow	0.2	0.2	0.0	0.0	2	No	4,450
2	1	Humboldt	Orick	US Hwy 101	1_HUM_101_1148	1_HUM_101_1145	yellow	0.3	0.3	0.0	0.0	2	Yes	4,050
3	2	Siskiyou	Yreka	I-5	2 SIS 5 447	2 SIS 5 446	yellow	0.1	0.1	0.0	0.0	4	No	19,000
4	2	Siskiyou	Mt. Shasta	I-5	2 SIS 5 99	2 SIS 5 96	yellow	0.3	0.3	0.0	0.0	4	No	22,350
5	2	Tehama	Red Bluff	I-5	2_TEH_5_275	2_TEH_5_272	yellow	0.3	0.3	0.0	0.0	4	No	38,500
6	2	Lassen	Susanville	US Hwy 395	2_LAS_395_555	2_LAS_395_529	yellow	2.6	1.0	0.0	0.0	3	Yes	6,950
7	3	El Dorado	Placerville	US Hwy 50	3_ED_50_221	3_ED_50_224	yellow	0.3	0.3	0.0	0.0	4	No	27,450
8	4	Santa Clara	Los Altos Hills	I-280	4 SCL 280 153	4 SCL 280 151	yellow	0.2	0.2	0.0	0.0	8	No	131,500
9	5	San Luis Obispo	Templeton	US Hwy 101	5_SLO_101_497	5 SLO 101 492	red	0.5	0.2	0.3	0.1	4	Yes	58,850
10	6	Madera	Oakhurst	Hwy 41	6 MAD 41 352	6 MAD 41 348	yellow	0.4	0.4	0.0	0.0	3	No	16,500
11	9	Mono	Bridgeport	US Hwy 395	9 MNO 395 819	9 MNO 395 809	orange	1.0	0.6	0.3	0.0	2	No	3,050
12	9	Mono	Mammoth Lakes	US Hwy 395	9 MNO 395 201	9 MNO 395 195	orange	0.6	0.2	0.4	0.0	4	No	9,650
13	10	Mariposa	Mariposa	Hwy 49	10 MPA 49 126	10 MPA 49 123	yellow	0.3	0.3	0.0	0.0	2	Yes	5,200



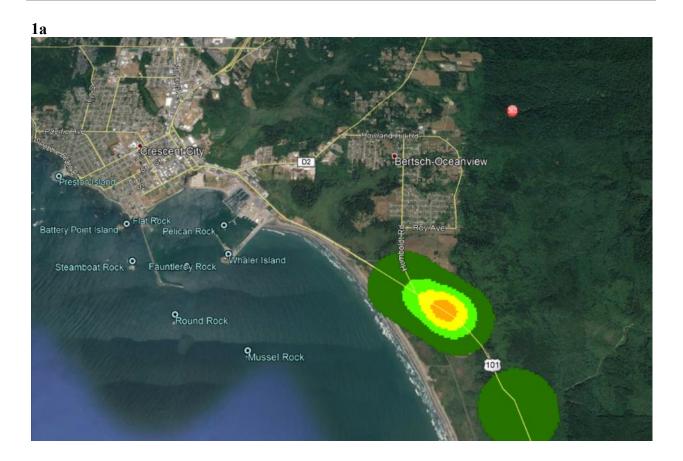


9. APPENDIX B: ANALYSES PER DISTRICT DEER-VEHICLE CRASH HOT SPOTS

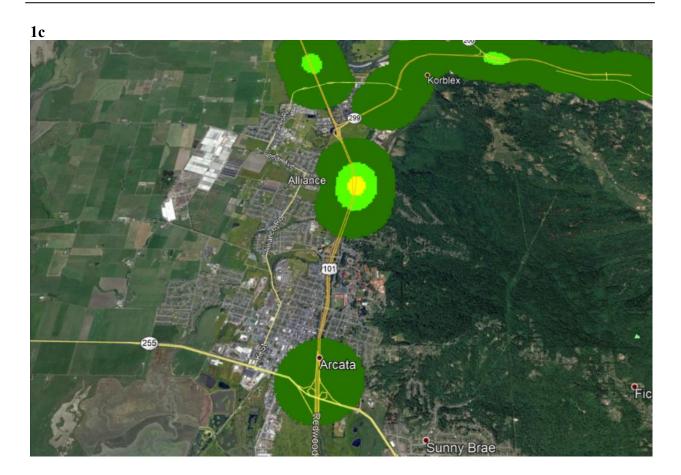
CRASH DATA PER DISTRICT


The numbers in the table on the following page correspond with the detailed maps per district and maps of the individual hot spots within a district on the following pages.

The "worst" hot spots based on analyses for deer-vehicle crashes per Caltrans district. Note: AADT = Annual Average Daily Traffic.


Hot spot	Dis-	C 1	N. I.	т	St. 41.4	E II 4	Most severe	Total length	Length	Length orange	Length red	Lanes	Existing	AADT
ID#	trict	County Del Norte	Nearby town Crescent City	Highway US Hwy 101	Start hot spot 1 DN 101 239	End hot spot 1 DN 101 233	category	(mi) 0.6	(mi) 0.3	(mi) 0.3	(mi) 0.0	(n) 2	No Structure	4,450
1b	1	Humboldt	Orick	US Hwy 101	1 HUM 101 239	1 HUM 101 1142	orange red	0.8	0.3	0.3	0.0	2	Yes	4,430
10 1c	1	Humboldt	Arcata	US Hwy 101	1 HUM 101 1130	1 HUM 101 1142	yellow	0.8	0.4	0.2	0.2	4	No	38,200
1d	1	Humboldt	Redway	US Hwy 101	1 HUM 101 878	1 HUM 101 8/3	vellow	0.3	0.3	0.0	0.0	4	No	8,100
	•	Humboldt	Redway	US Hwy 101	1 HUM 101 147	1 HUM 101 143	vellow	0.4	0.4	0.0	0.0	5	No	7,650
1e	1		-	-					0.2					
1f	1	Humboldt	Redway	US Hwy 101	1 HUM 101 70	1 HUM 101 69	yellow	0.1		0.0	0.0	4	No	6,850
1g	1	Mendocino	Laytonville	US Hwy 101	1 MEN 101 668	1 MEN 101 665	yellow	0.3	0.3	0.0	0.0	2	No	7,800
1h	1	Mendocino	Willits	US Hwy 101	1 MEN 101 426	1 MEN 101 424	yellow	0.2	0.2	0.0	0.0	4	No	21,000
2-	2	Gi-l-i	II l l-	T 5	2 GIG 5 (51	2 818 5 (2)	11	2.5	0.0	0.0	0.0	4	V	16 200
2a	2	Siskiyou	Hornbrook	I-5	2_SIS_5_651	2_SIS_5_636	yellow	2.5	0.8	0.0	0.0	4	Yes	16,200
2b	2	Siskiyou	Yreka	I-5	2 SIS 5 486	2 SIS 5 483	yellow	0.3	0.3	0.0	0.0	4	Yes	16,550
2c	2	Siskiyou	Yreka	I-5	2 SIS 5 450	2 SIS 5 444	orange	0.6	0.3	0.3	0.0	4	No	18,850
2d	2	Siskiyou	Mt. Shasta	I-5	2_SIS_5_100	2 SIS 5 95	orange	0.5	0.2	0.3	0.0	4	No	22,350
2e	2	Tehama	Red Bluff	I-5	2_TEH_5_319	2 TEH 5 314	yellow	0.5	0.5	0.0	0.0	5	Yes	42,750
2f	2	Tehama	Red Bluff	I-5	2 TEH 5 276	2 TEH 5 271	yellow	0.5	0.2	0.3	0.0	4	No	38,500
2g	2	Lassen	Susanville	US Hwy 395	2 LAS 395 557	2 LAS 395 501	red	5.6	2.3	0.8	0.2	3	Yes	6,950
2h	2	Siskiyou	Black Butte	I-5	2 SIS 5 149	2 SIS 5 145	yellow	0.4	0.4	0.0	0.0	4	No	24,800
3a	3	El Dorado	Placerville	US Hwy 50	3_ED_50_229	3_ED_50_220	red	0.9	0.2	0.5	0.2	4	No	27,450
3b	3	El Dorado	Perks Corner	US Hwy 50	3 ED 50 152	3 ED 50 115	orange	3.7	1.4	0.2	0.0	4	Yes	10,600
3c	3	El Dorado	Shingle Springs	US Hwy 50	3 ED 50 88	3 ED 50 54	yellow	3.4	1.1	0.0	0.0	6	No	66,200
3d	3	Sacramento	Rancho Murieta	Hwy 16	3 SAC 16 197	3 SAC 16 194	yellow	0.3	0.3	0.0	0.0	2	No	11,250
3e	3	Nevada	Grass Valley	Hwy 49/20	3_NEV_20_150	3_NEV_20_135	yellow	0.5	0.5	0.0	0.0	6	No	21,800
3f	3	Nevada	Grass Valley	Hwy 20	3_NEV_20_115	3_NEV_20_111	yellow	0.4	0.4	0.0	0.0	3	No	21,300
3g	3	Nevada	Penn Valley	Hwy 20	3_NEV_20_70	3 NEV 20 66	orange	0.4	0.2	0.2	0.0	3	No	15,800
			La Barr											
3h	3	Nevada	Meadows	Hwy 49	3 NEV 49 121	3 NEV 49 117	orange	0.4	0.2	0.2	0.0	3	No	24,500
3i	3	Nevada	Alta Sierra	Hwy 49	3 NEV 49 90	3 NEV 49 79	orange	1.1	0.5	0.2	0.0	3	No	23,550
3j	3	Nevada	Higgins Corner	Hwy 49	3 NEV 49 40	3 NEV 49 26	orange	1.4	0.7	0.3	0.0	2	Yes	23,200
3k	3	Placer	Overhill Dr	Hwy 49	3 PLA 49 113	3 PLA 49 110	yellow	0.3	0.3	0.0	0.0	4	No	30,700
31	3	Placer	Elders Corner	Hwy 49	3 PLA 49 81	3 PLA 49 78	orange	0.3	0.3	0.0	0.0	4	No	32,500
3m	3	Placer	Weimar	I-80	3 PLA 80 295	3 PLA 80 291	yellow	0.4	0.4	0.0	0.0	5	Yes	39,450
4a	4	Marin	San Rafael	US Hwy 101	4_MRN_101_128	4_MRN_101_125	yellow	0.3	0.3	0.0	0.0	10	No	202,700

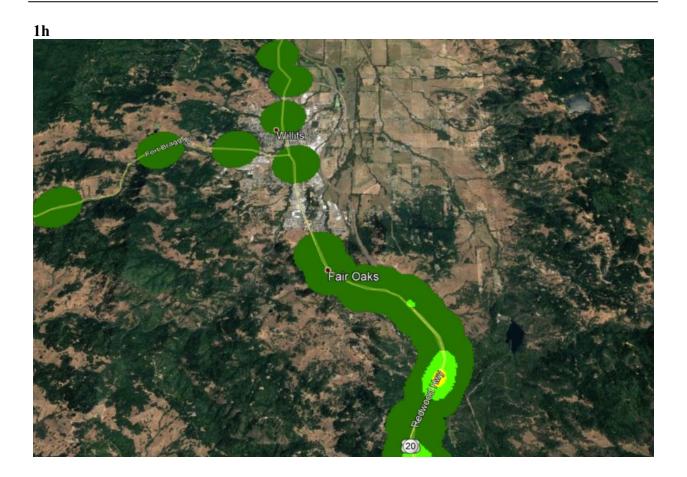
Hot spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	Most severe category	Total length (mi)	Length yellow (mi)	Length orange (mi)	Length red (mi)	Lanes (n)	Existing structure	AADT
4b	4	Marin	Strawberry	US Hwy 101	4 MRN 101 59	4 MRN 101 56	yellow	0.3	0.3	0.0	0.0	10	No	152,800
			Highlands- Baywood											,
4c	4	San Mateo	Park	I-280	4 SM 280 144	4 SM 280 122	yellow	2.2	1.0	0.0	0.0	10	Yes	129,000
4d	4	San Mateo	Woodside	I-280	4 SM 280 95	4_SM_280_31	orange	6.4	1.7	0.3	0.0	8	Yes	114,000
4e	4	Santa Clara	Stanford	I-280	4_SM_280_2	4_SCL_280_182	yellow	2.6	0.6	0.0	0.0	8	No	121,000
4f	4	Santa Clara	Los Altos Hills	I-280	4 SCL 280 154	4 SCL 280 150	red	0.4	1.0	2.0	1.0	6	No	131,500
4g	4	Contra Costa	Condit	Hwy 24	4 CC 24 78	4 CC 24 76	yellow	0.2	0.2	0.0	0.0	8	No	209,500
4h	4	Contra Costa	Orinda	Hwy 24	4 CC 24 25	4 CC 24 21	yellow	0.4	0.4	0.0	0.0	8	No	188,000
4i	4	Alameda	Redwood Heights	Hwy 13	4_ALA_13_54	4_ALA_13_51	yellow	0.3	0.3	0.0	0.0	4	No	54,600
5a	5	San Luis Obispo	Templeton	US Hwy 101	5 SLO 101 497	5 SLO 101 492	red	0.5	0.2	0.3	0.1	4	Yes	58,850
6a	6	Madera	Oakhurst	Hwy 41	6 MAD 41 352	6 MAD 41 347	red	0.5	0.2	0.2	0.1	3	No	19,000
6b	6	Madera	Oakhurst	Hwy 41	6 MAD 41 317	6 MAD 41 314	yellow	0.3	0.3	0.0	0.0	2	No	19,000
00	Ü	Madera	Oukiiuist	11	0 101115 11 317	U WILL II SII	Jeno	0.5	0.5	0.0	0.0		110	17,000
7a	7	Los Angeles	Glendale	Hwy 134	7 LA 134 94	7 LA 134 90	red	0.4	0.1	0.2	0.1	8	No	209,500
7b	7	Los Angeles	Glendale	Hwy 2	7 LA 2 228	7 LA 2 200	orange	2.8	0.7	0.1	0.0	9	No	124,500
7-	7	Los Angeles	Sherman Oaks	I-405	7 1 4 405 207	7 1 4 405 202		0.4	0.3	0.1	0.0	12	No	252 500
7c	/	Angeles	Casitas	1-405	7 LA 405 387	7 LA 405 383	orange	0.4	0.3	0.1	0.0	12	INO	253,500
7d	7	Ventura	Springs	Hwy 33	7 VEN 33 59	7 VEN 33 55	orange	0.4	0.3	0.1	0.0	3	No	26,500
7e	7	Ventura	Moorpark	Hwy 118	7 VEN 118 202	7 VEN 118 200	yellow	0.2	0.2	0.0	0.0	5	No	79,500
8a	8	San Bernardino	Crestline	Hwy 18	8 SBD 18 162	8 SBD 18 151	red	1.1	0.3	0.6	0.2	4	No	16,550
	_	San	Silverwood									_		
8b	8	Bernardino	Lake	Hwy 138	8 SBD 138 249	8 SBD 138 247	yellow	0.2	0.2	0.0	0.0	2	No	2,925
8c	8	San Bernardino	Running Springs	Hwy 330	8 SBD 330 433	8 SBD 330 407	orange	2.6	0.6	0.3	0.0	2	No	11,500
		San	Running											,,,,,,,
8d	8	Bernardino San	Springs	Hwy 18	8 SBD 18 294	8 SBD 18 290	yellow	0.4	0.4	0.0	0.0	2	No	5,750
8e	8	Bernardino	Skyforest	Hwy 18	8 SBD 18 263	8 SBD 18 261	yellow	0.2	0.2	0.0	0.0	2	No	5,750
8f	8	Riverside	Palo Verde Intake	US Hwy 95	8 RIV 95 125	8 RIV 95 123	yellow	0.2	0.2	0.0	0.0	2	No	1,300

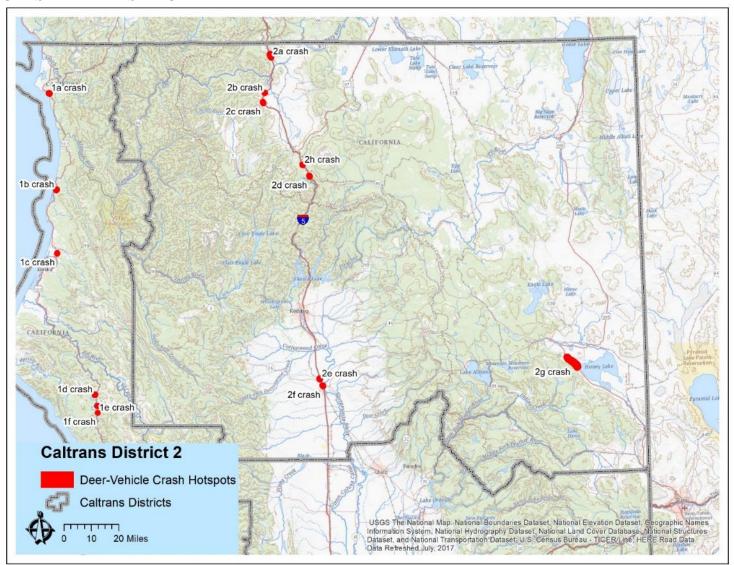

Hot spot	Dis-						Most severe	Total length	Length yellow	Length orange	Length red	Lanes	Existing	
ID#	trict	County	Nearby town	Highway	Start hot spot	End hot spot	category	(mi)	(mi)	(mi)	(mi)	(n)	structure	AADT
9a	9	Mono	Bridgeport	US Hwy 395	9_MNO_395_819	9_MNO_395_809	red	1.0	0.5	0.3	0.2	2	No	3,050
			Whitmore											
9b	9	Mono	Hot Spr.	US Hwy 395	9_MNO_395_202	9 MNO 395 195	red	0.7	0.3	0.3	0.1	4	No	7,250
9c	9	Mono	Grant Lake	US Hwy 395	9 MNO 395 448	9 MNO 395 445	yellow	0.3	0.3	0.0	0.0	4	No	4,625
10a	10	Mariposa	Bootjack	Hwy 49	10 MPA 49 127	10 MPA 49 111	red	1.6	0.4	0.2	0.2	2	Yes	5,200
10b	10	Calaveras	San Andreas	Hwy 49	10 CAL 49 208	10 CAL 49 205	yellow	0.3	0.3	0.0	0.0	2	Yes	7,250
			Warner											
11a	11	San Diego	Springs	Hwy 79	11_SD_79_363	11_SD_79_357	red	0.6	0.2	0.2	0.2	2	No	1,400
11b	11	San Diego	Santa Ysabel	Hwy 78	11_SD_78_548	11 SD 78 520	red	2.8	0.5	0.3	0.1	2	No	4,425
			Lake											
11c	11	San Diego	Cuyamaca	Hwy 79	11_SD_79_103	11_SD_79_99	yellow	0.4	0.4	0.0	0.0	2	No	1,650
11d	11	San Diego	La Jolla	I-5	11_SD_5_298	11 SD 5 295	yellow	0.3	0.3	0.0	0.0	12	No	174,500
12a	12	Orange	Las Flores	Hwy 241	12_ORA_241_168	12 ORA 241 152	red	1.6	0.3	0.2	0.1	4	Yes	6,900
			Peters Cany.											
12b	12	Orange	Res.	Hwy 261	12_ORA_261_59	12_ORA_261_56	yellow	0.3	0.3	0.0	0.0	5	Yes	32,200
12c	12	Orange	Villa Park	Hwy 241	12_ORA_241_388	12 ORA 241 385	yellow	0.3	0.3	0.0	0.0	9	No	47,800
			Laguna											
12d	12	Orange	Woods	Hwy 73	12 ORA 73 167	12 ORA 73 165	yellow	0.2	0.2	0.0	0.0	7	No	62,700

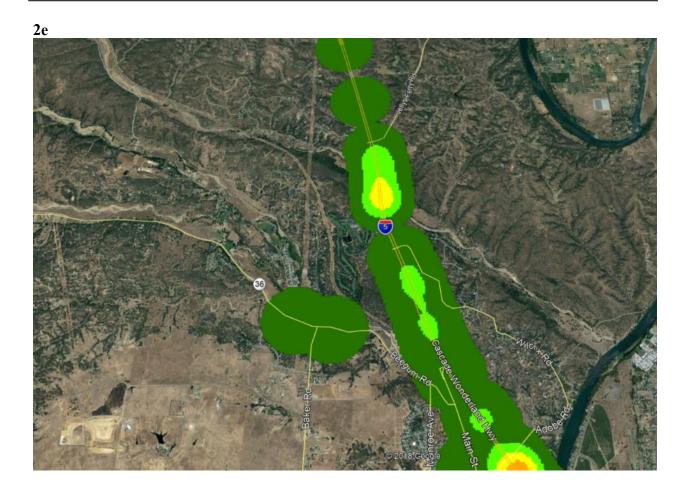


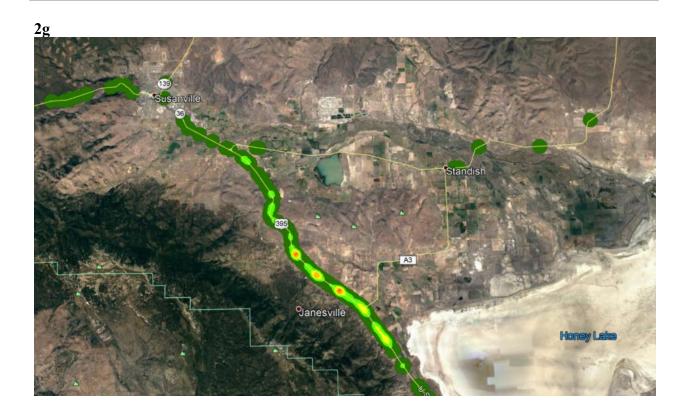
Hot spots in District 1 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.



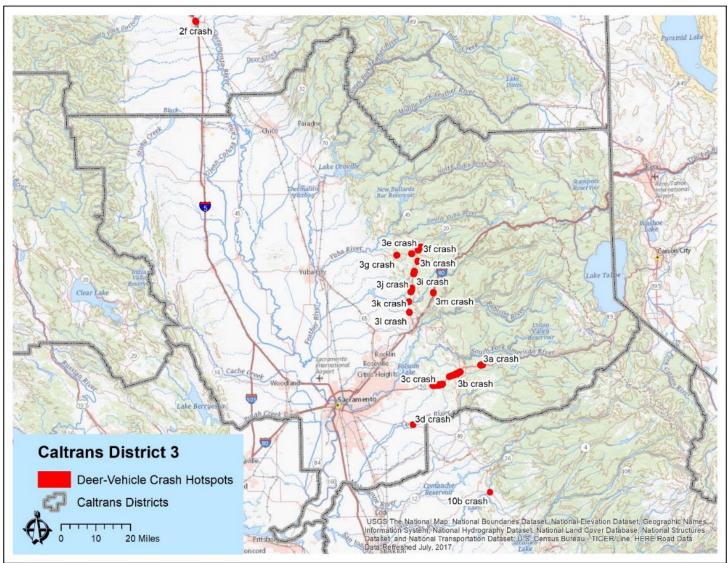




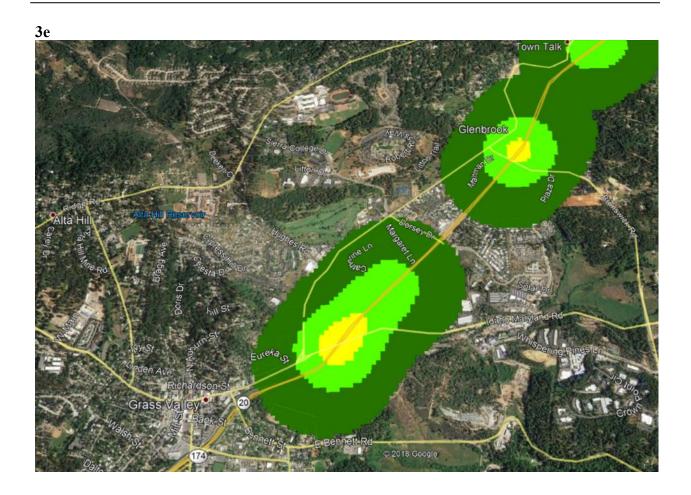

Hot spots in District 2 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

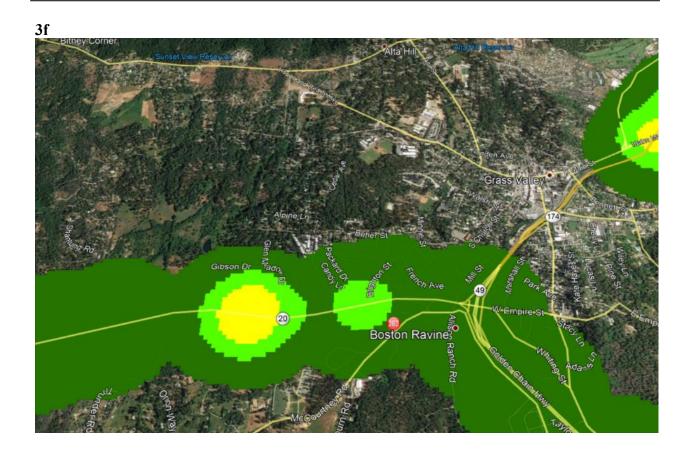


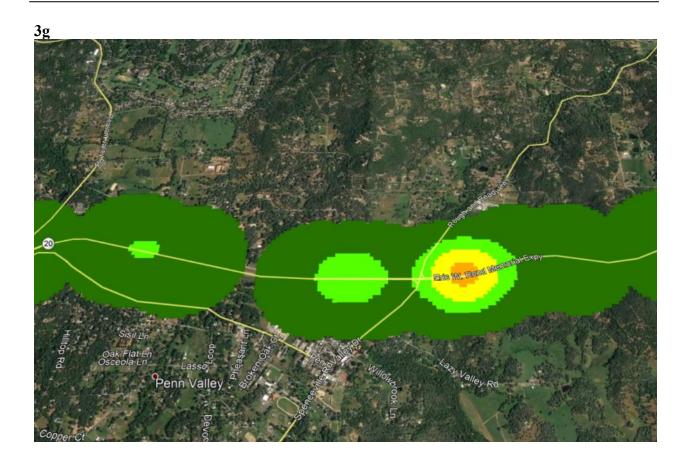


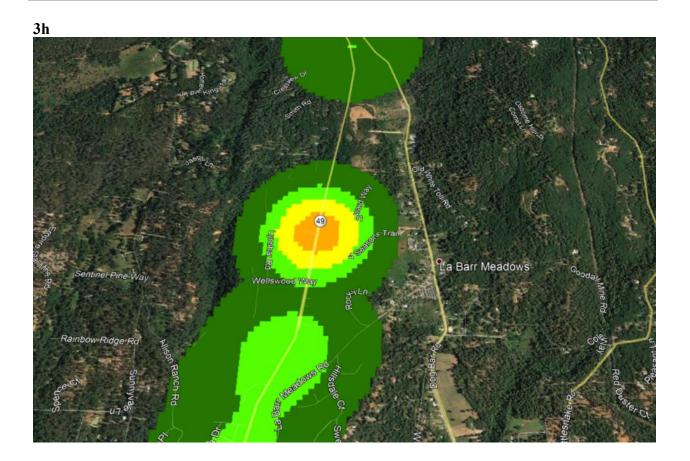


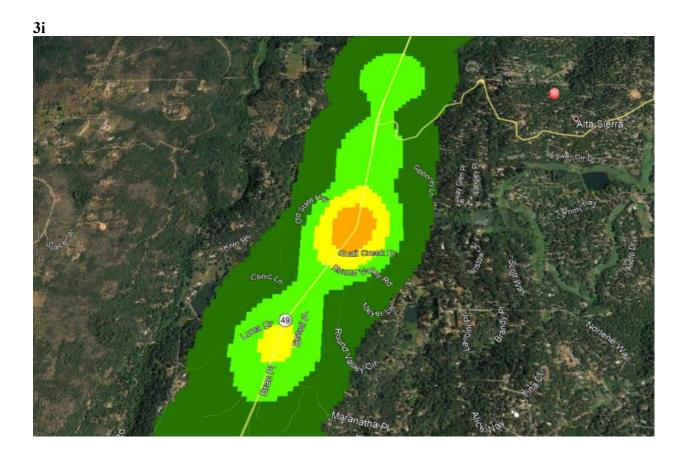
Hot spots in District 3 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

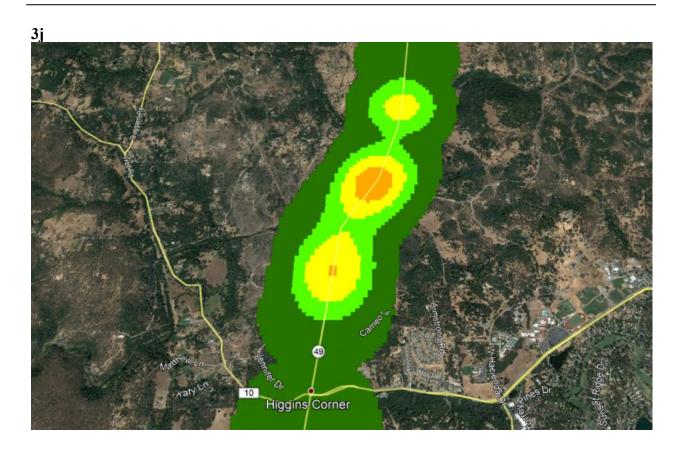




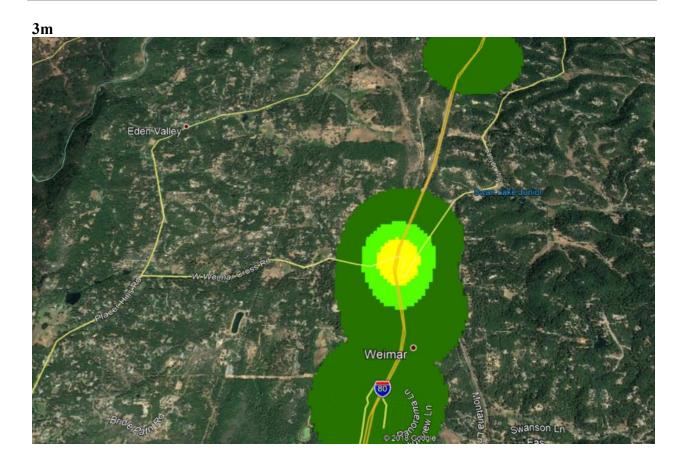


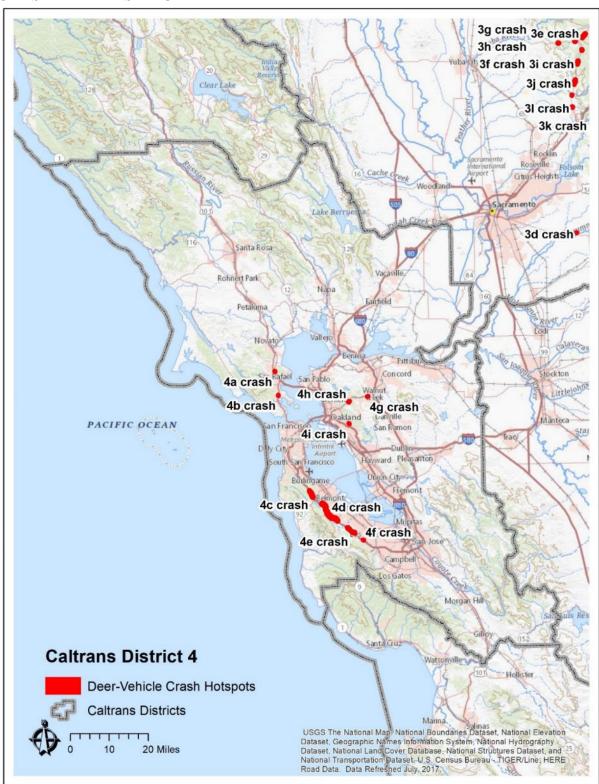

<u>3d</u>

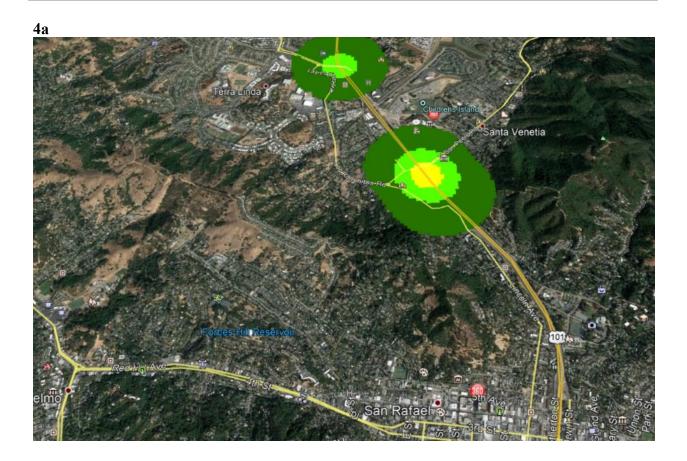


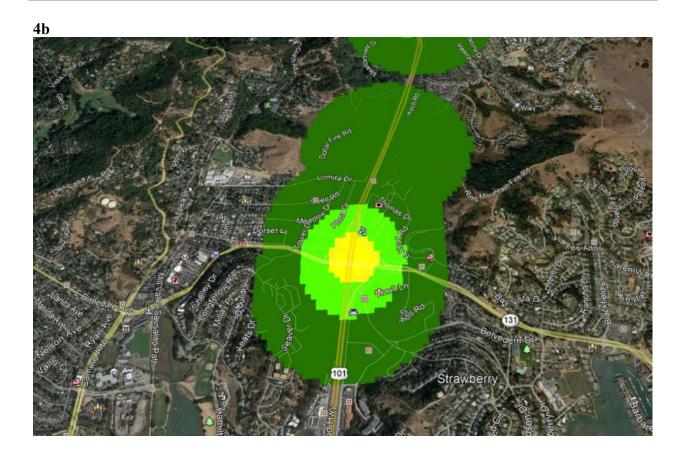




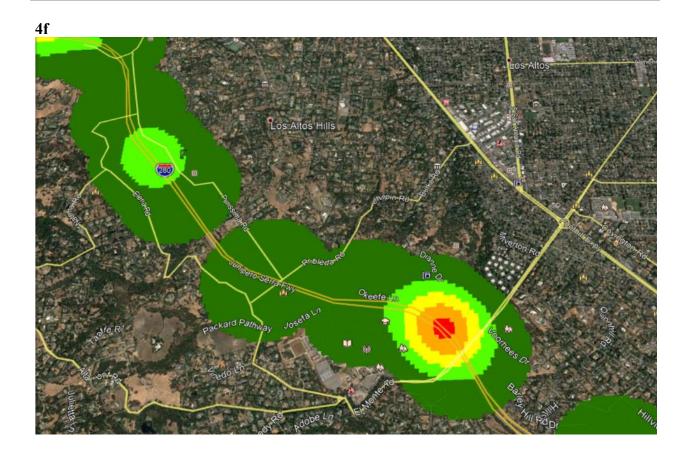


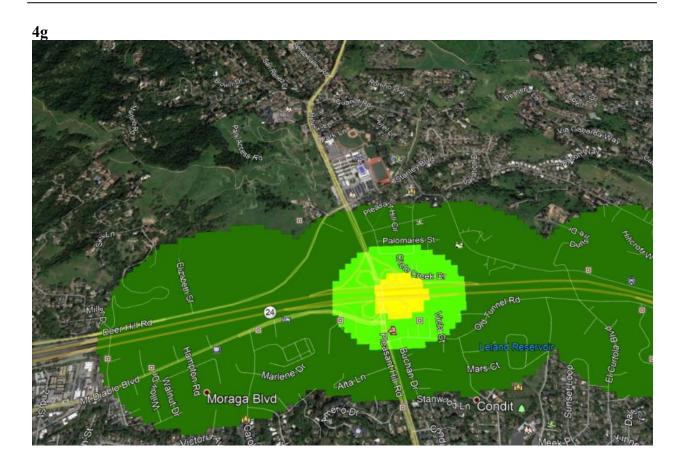


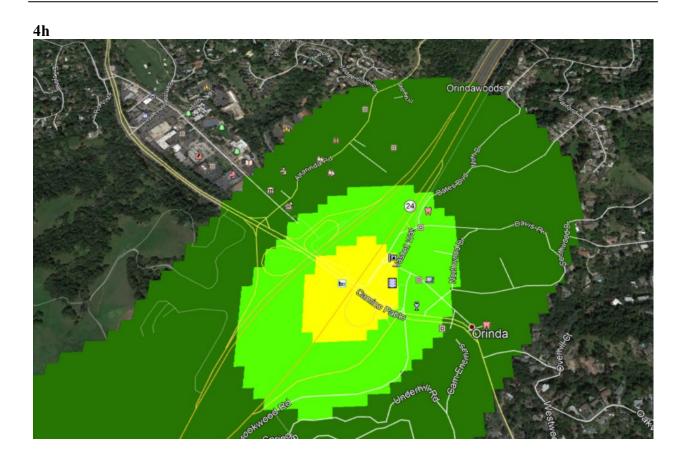


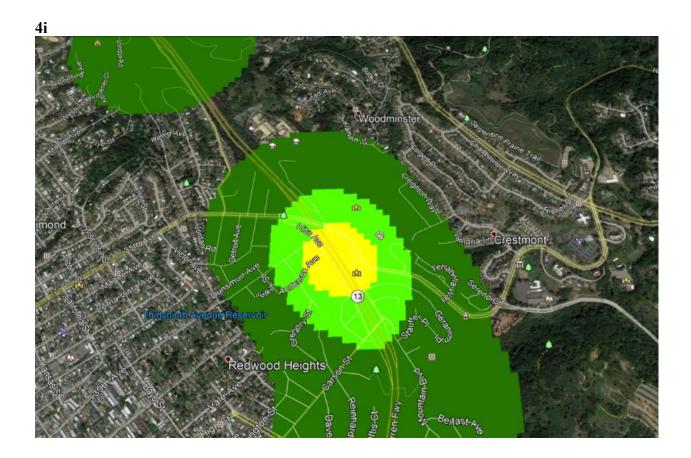


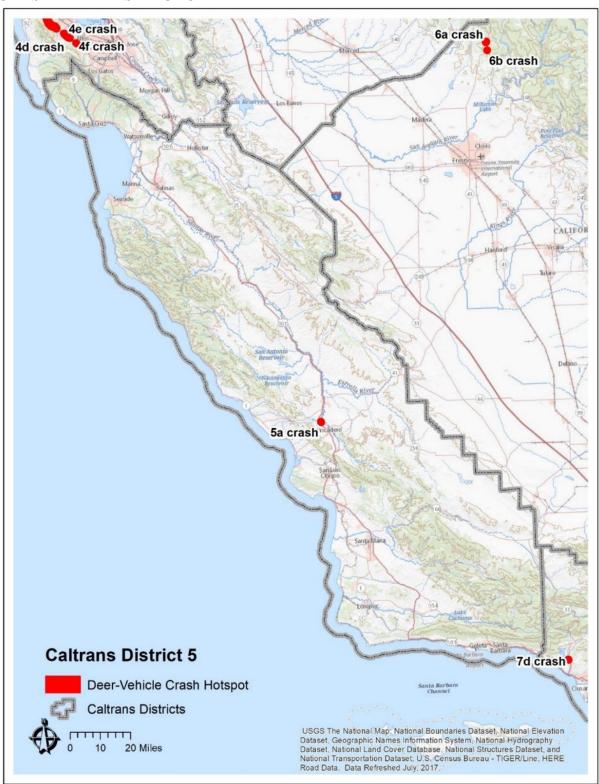
Hot spots in District 4 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

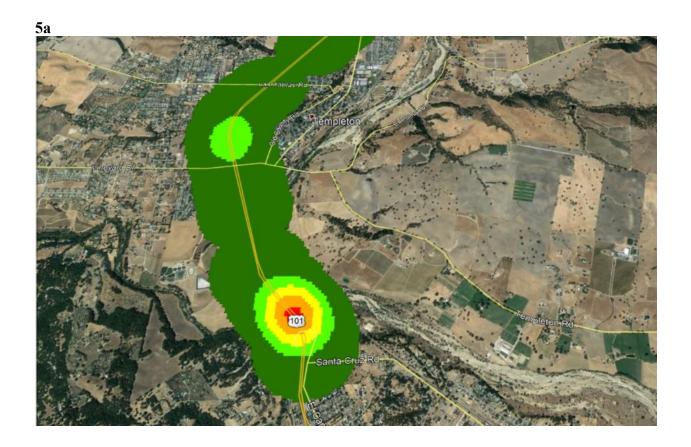


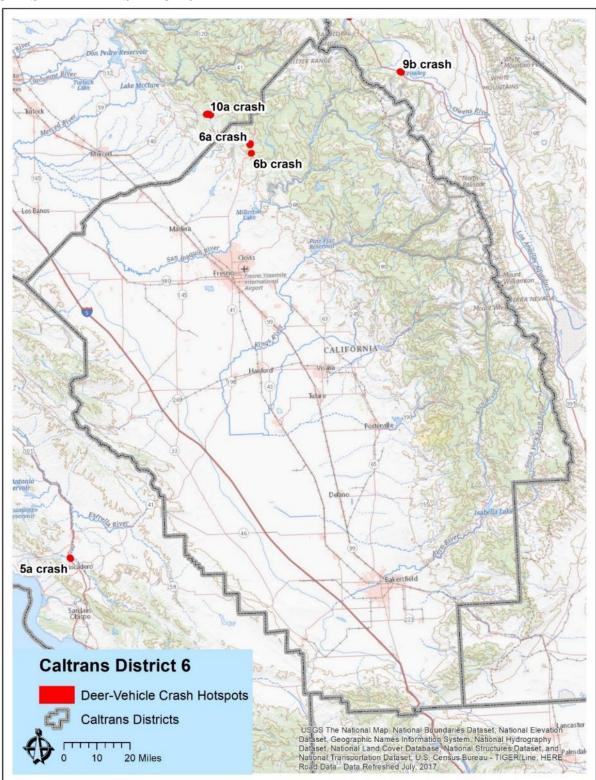


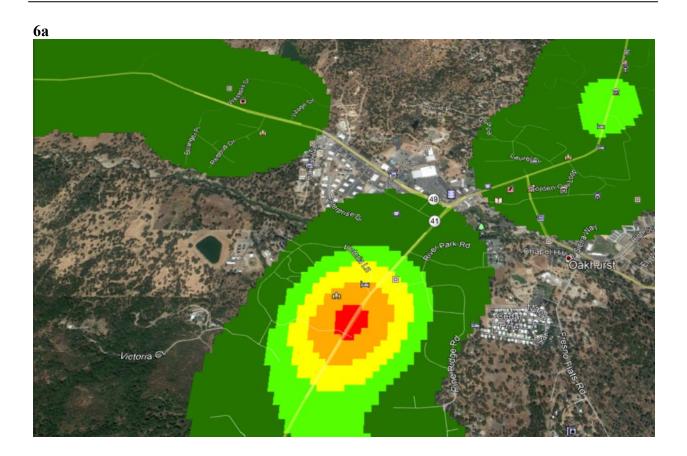




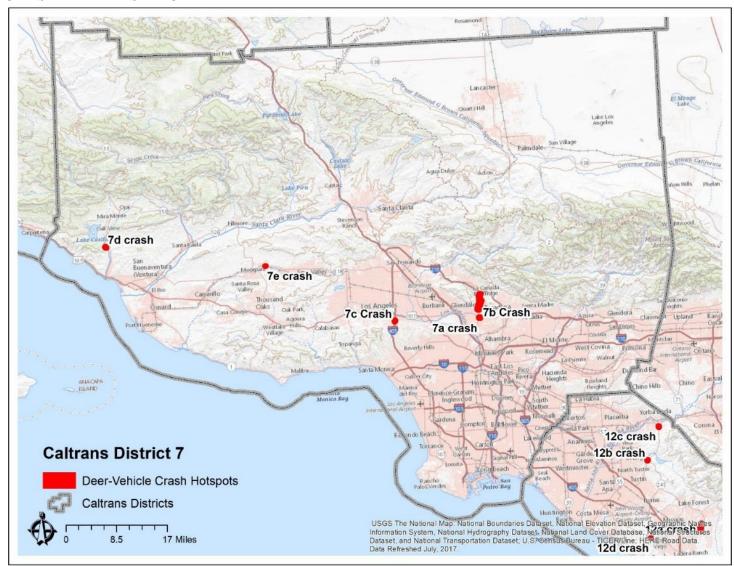




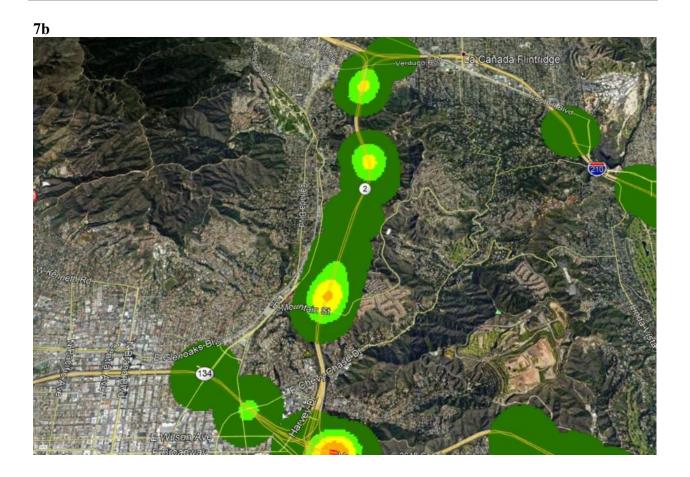


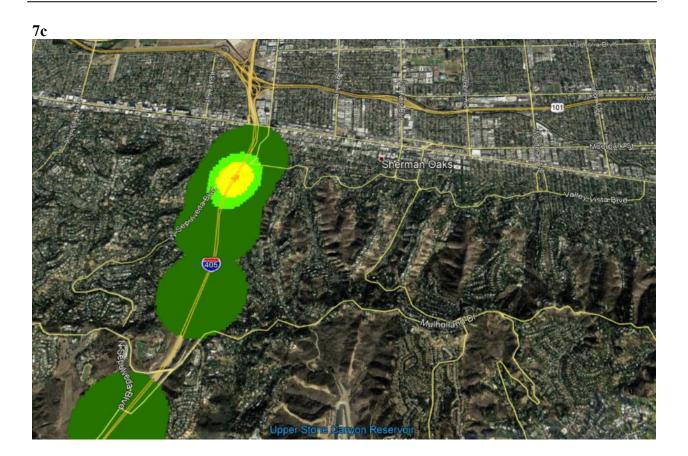



Hot spots in District 5 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

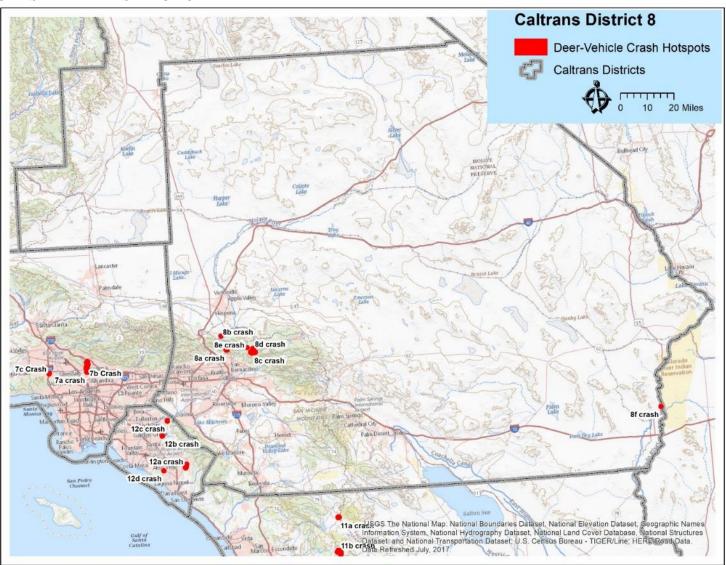


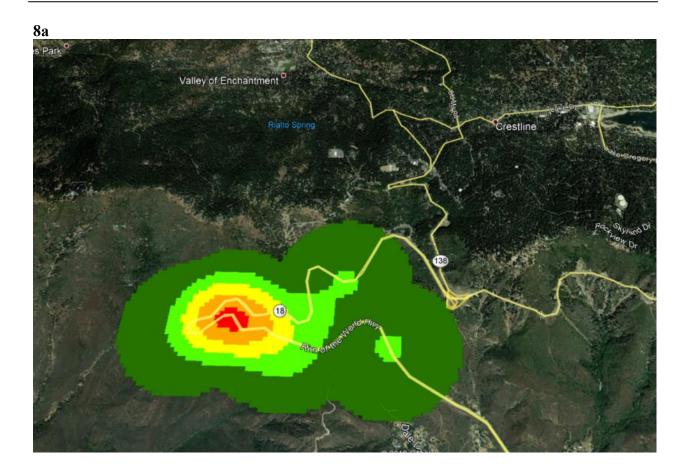
Hot spots in District 6 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.



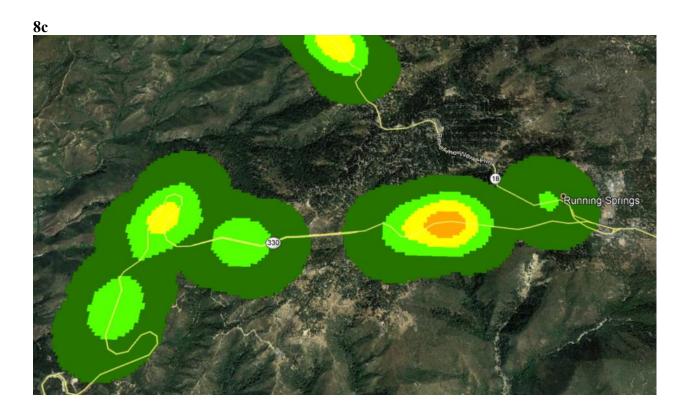


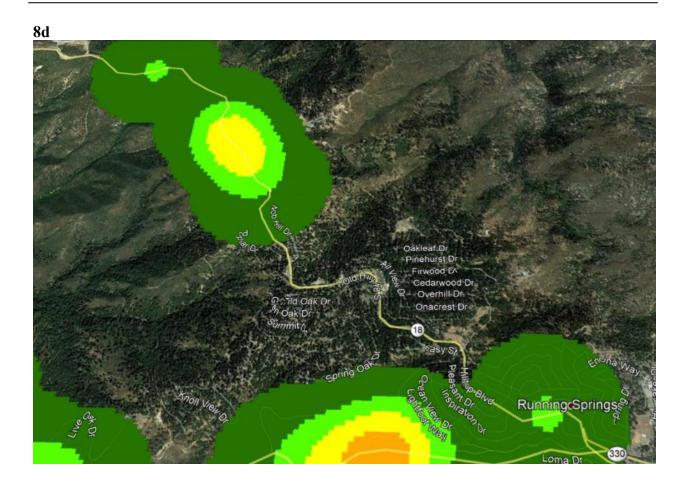

Hot spots in District 7 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

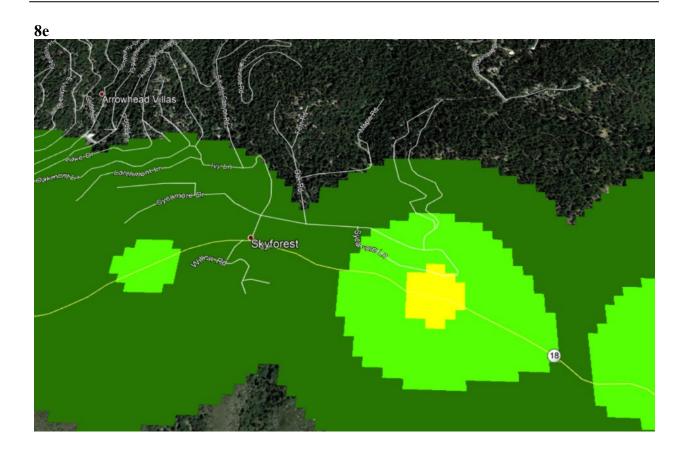


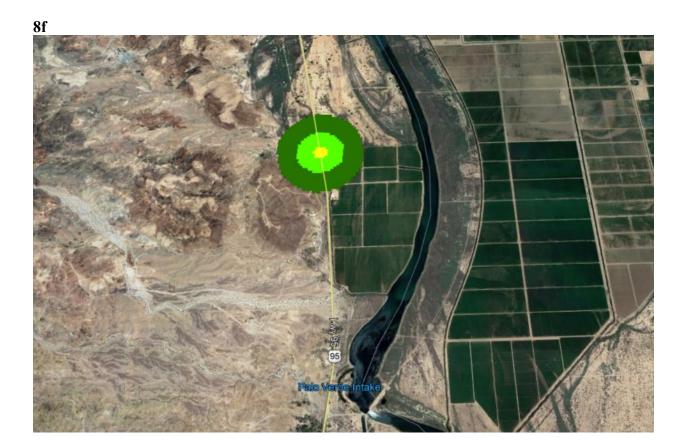


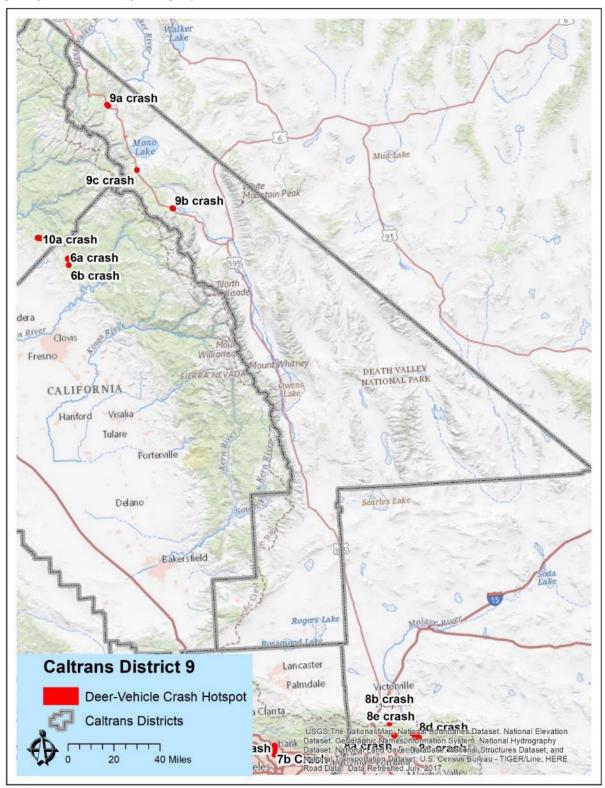


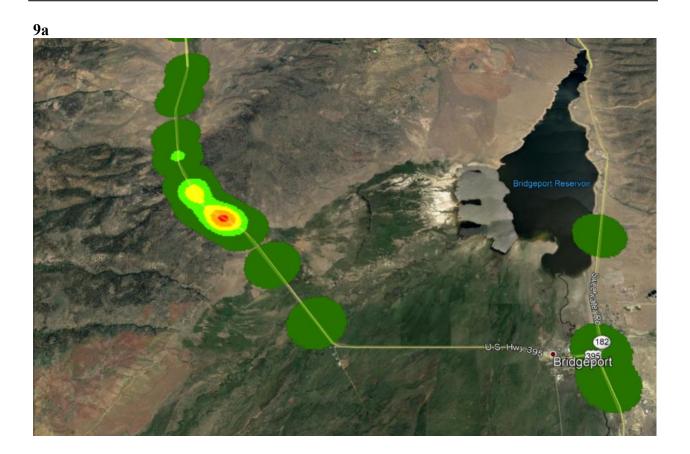


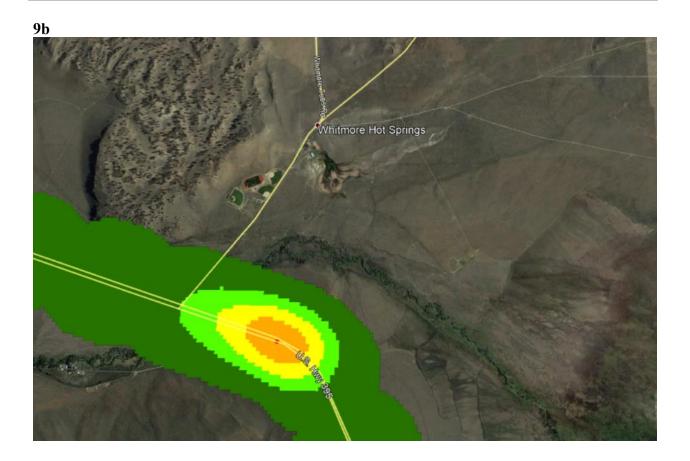


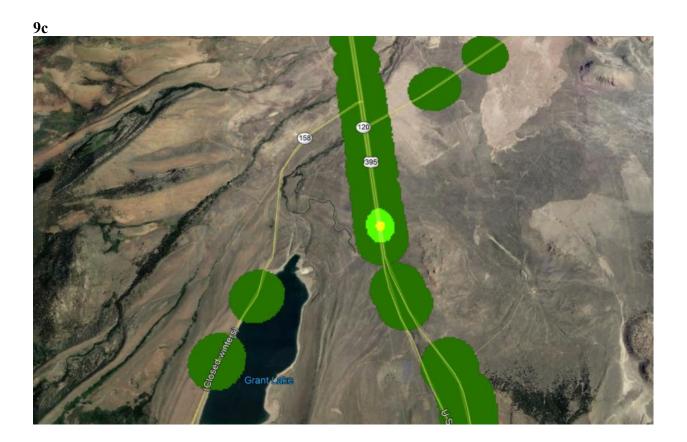

Hot spots in District 8 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

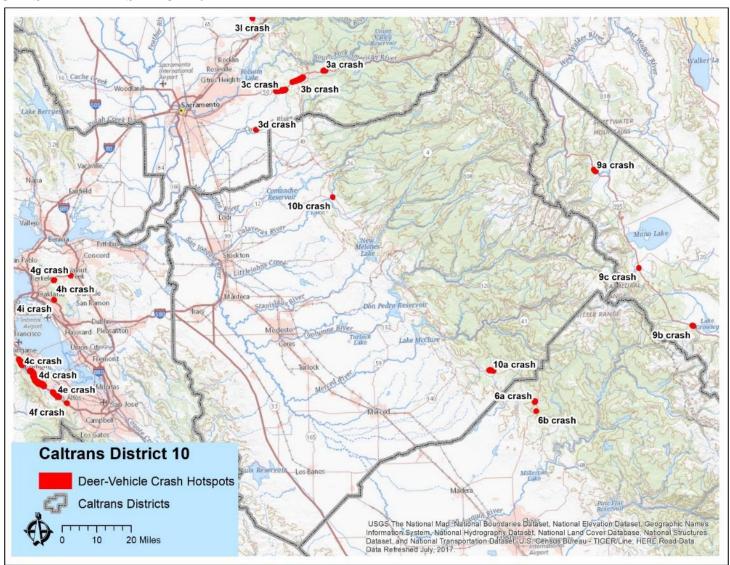




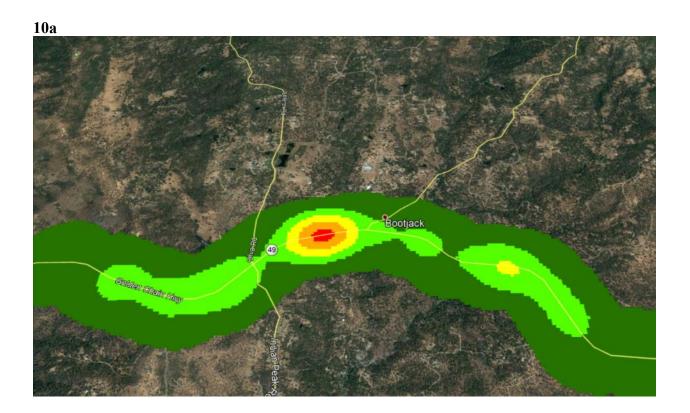


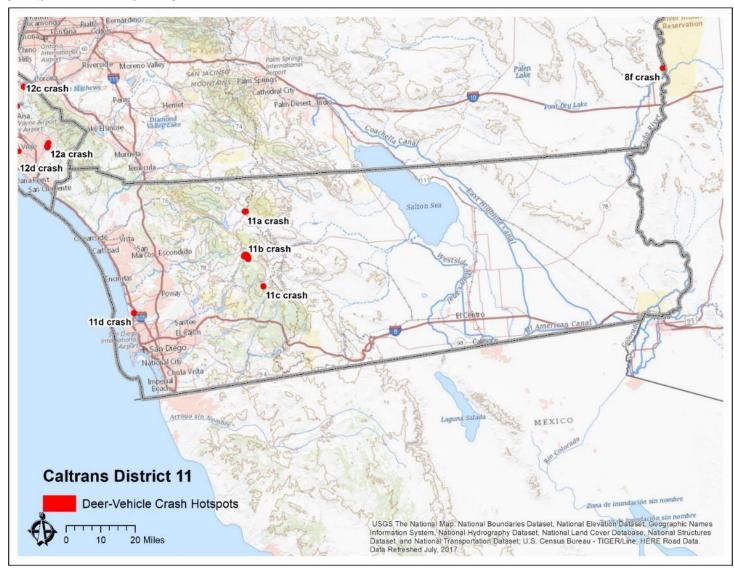




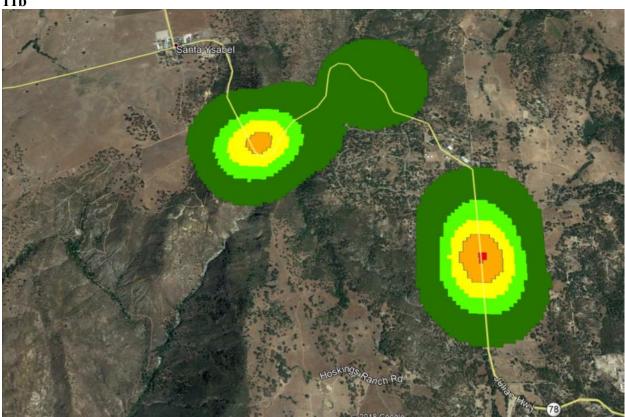


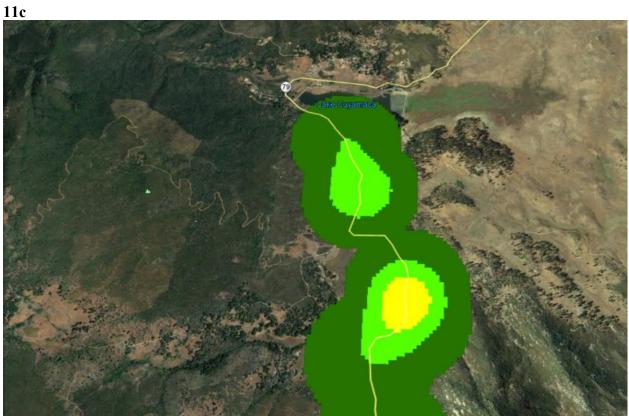
Hot spots in District 9 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.



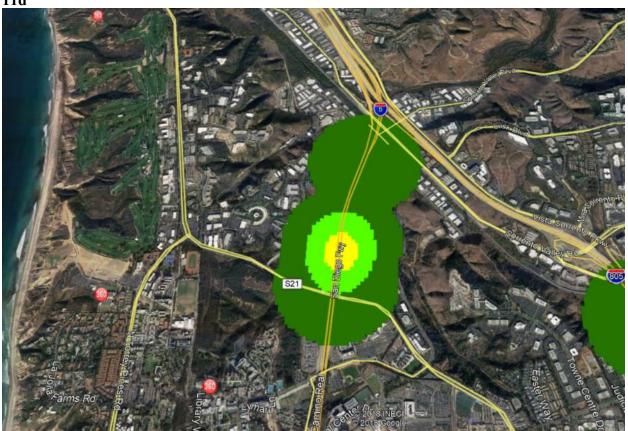


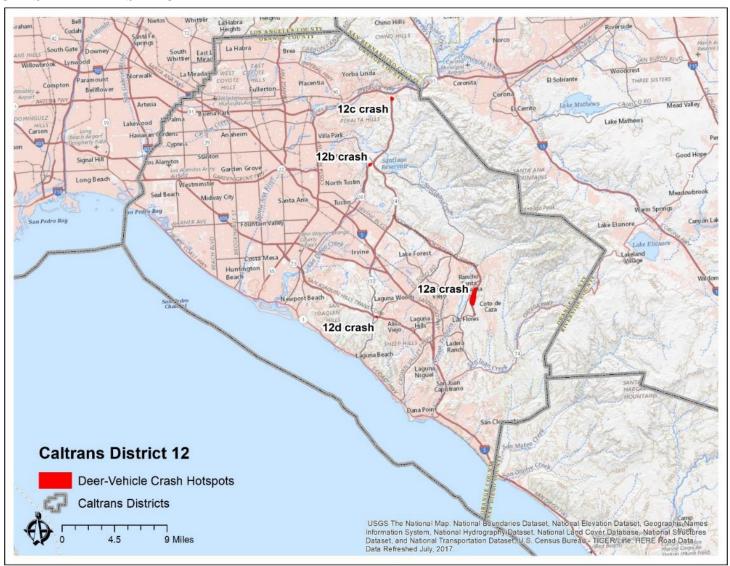
Hot spots in District 10 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

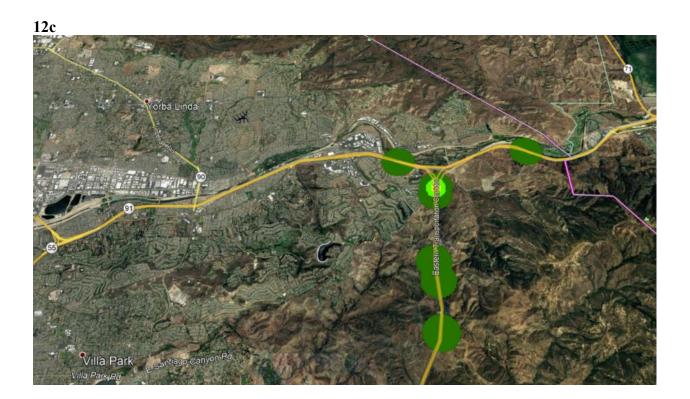




Hot spots in District 11 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.


Warner Springs **




CRASH DATA DISTRICT 12

Hot spots in District 12 based on per district deer-vehicle crash data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix B) and the detailed maps on the following pages.

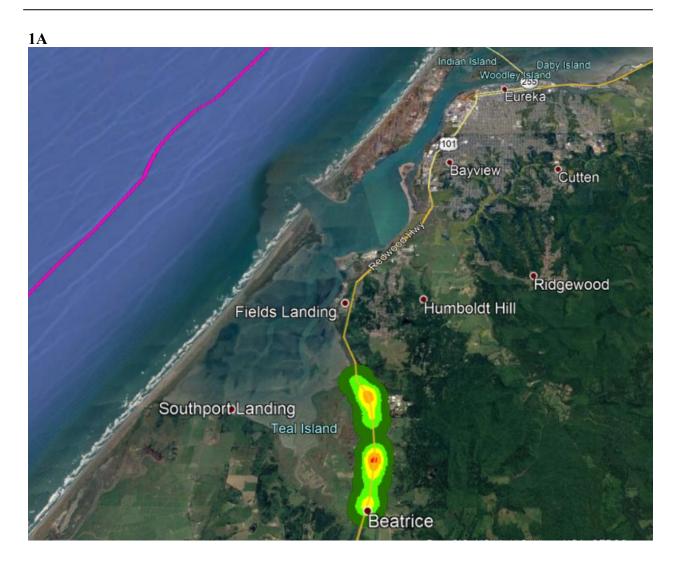
10.APPENDIX C: ANALYSES PER DISTRICT MULE DEER CARCASSES

CARCASS DATA PER DISTRICT

The numbers in the table on the following page correspond with the detailed maps per district and maps of the individual hot spots within a district on the following pages.

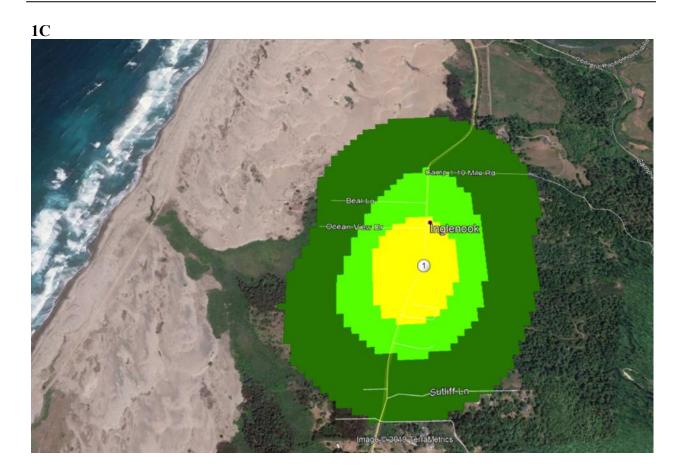
The "worst" hot spots based on analyses for mule deer carcasses per Caltrans district. Note: AADT = Annual Average Daily Traffic.

Hot spot	Dis-						Most severe	Total length	Length yellow	Length orange	Length red	Lanes	Existing	
ID#	trict	County	Nearby town	Highway	Start hot spot	End hot spot	category	(mi)	(mi)	(mi)	(mi)	(n)	structure	AADT
1A	1	Humboldt	Eureka	US Hwy 101	1_HUM_101_704	1_HUM_101_681	red	2.3	0.9	0.7	0.1	4	yes	24150
1B	1	Humboldt	Fortuna	US Hwy 101	1_HUM_101_641	1_HUM_101_601	yellow	4.0	1.5	0.0	0.0	4	yes	24000
1C	1	Mendocino	Inglenook	Hwy 1	1_MEN_1_685	1_MEN_1_681	yellow	0.4	0.4	0.0	0.0	2	No	4925
1D	1	Mendocino	Fort Bragg	Hwy 1	1_MEN_1_640	1_MEN_1_636	yellow	0.4	0.4	0.0	0.0	2	No	4925
1E	1	Mendocino	Caspar	Hwy 1	1_MEN_1_554	1_MEN_1_534	yellow	2.0	0.5	0.0	0.0	2	Yes	10200
1F	1	Mendocino	Little River	Hwy 1	1_MEN_1_483	1_MEN_1_479	yellow	0.4	0.4	0.0	0.0	2	Yes	3750
1G	1	Mendocino	Elk	Hwy 1	1_MEN_1_275	1_MEN_1_272	yellow	0.3	0.3	0.0	0.0	2	No	1300
1H	1	Mendocino	Anchor Bay	Hwy 1	1_MEN_1_30	1_MEN_1_28	yellow	0.2	0.2	0.0	0.0	2	No	3500
1I	1	Lake	Blue Lakes	Hwy 20	1_LAK_20_10	1_LAK_20_12	yellow	0.2	0.2	0.0	0.0	2	No	9650
1J	1	Lake	Pepperwood Grove	Hwy 20	1 LAK 20 180	1 LAK 20 192	vellow	1.2	0.6	0.0	0.0	2	No	8100
10	-	Built	Clearlake	11) 20	1,2,111,20,100	1 2 11 2 1 1 2	j elle ii	1.2	0.0	0.0	0.0		110	0100
1K	1	Lake	Oaks	Hwy 20	1 LAK 20 289	1_LAK_20_297	yellow	0.8	0.6	0.0	0.0	2	No	8150
1L	1	Lake	Riviera Estates	Hwy 281	1_LAK_281_167	1_LAK_281_169	yellow	0.1	0.1	0.0	0.0	2	No	6400
1M	1	Lake	Jct Hwy 281	Hwy 29	1_LAK_29_262	1_LAK_29_259	yellow	0.3	0.3	0.0	0.0	2	No	9350
1N	1	Lake	Lower lake	Hwy 29	1_LAK_29_207	1_LAK_29_198	yellow	0.9	0.6	0.0	0.0	2	No	10900
			Hidden											
10	1	Lake	Valley L.	Hwy 29	1_LAK_29_112	1_LAK_29_110	yellow	0.2	0.2	0.0	0.0	2	No	9900
		~					_			0.0				10000
2A	2	Siskiyou	Yreka	I-5	2 SIS 5 471	2 SIS 5 418	red	6.3	1.3	0.3	0.2	4	Yes	19000
2B	2	Siskiyou	Weed	I-5	2 SIS 5 202	2 SIS 5 199	yellow	0.3	0.3	0.0	0.0	4	No	17050
2C	2	Siskiyou	Mt. Shasta	I-5	2 SIS 5 126	2 SIS 5 122	yellow	0.4	0.4	0.0	0.0	4	No	23900
2D	2	Siskiyou	Dunsmuir	I-5	2 SIS 5 15	2 SIS 5 4	yellow	1.1	0.5	0.0	0.0	4	No	20350
2E	2	Siskiyou	Ft. Jones	Hwy 3	2 SIS 3 332	2 SIS 3 329	yellow	0.3	0.3	0.0	0.0	2	No	3625
2F	2	Siskiyou	Indian Tom Lake	US Hwy 97	2 SIS 97 540	2 SIS 97 524	yellow	0.3	0.3	0.0	0.0	2		665
2G	2	Siskiyou	Macdoel	US Hwy 97	2 SIS 97 405	2 SIS 97 403	yellow	0.2	0.2	0.0	0.0	2	No	1190
2H	2	Modoc	Hannchen	Hwy 139	2 MOD 139 391	2 MOD 139 385	yellow	0.6	0.6	0.0	0.0	2	No	1625
2I	2	Modoc	Hannchen	Hwy 139	2 MOD 139 356	2 MOD 139 353	yellow	0.3	0.3	0.0	0.0	2	No	1625
	3	Insufficient data												
4A	4	San Mateo	Highlands- Baywood P.	Hwy 92	4 SM 92 96	4 SM 92 79	orange	1.7	0.9	0.1	0.0	4	No	77200
4B	4	Santa Clara	Los Altos Hills	I-280	4 SCL 280 165	4 SCL 280 144	orange	2.1	0.6	0.2	0.0	8	No	131500
4C	4	Alameda	Mission San Jose	I-680	4 ALA 680 67	4 ALA 680 64	red	0.5	0.2	0.2	0.1	6	No	155400

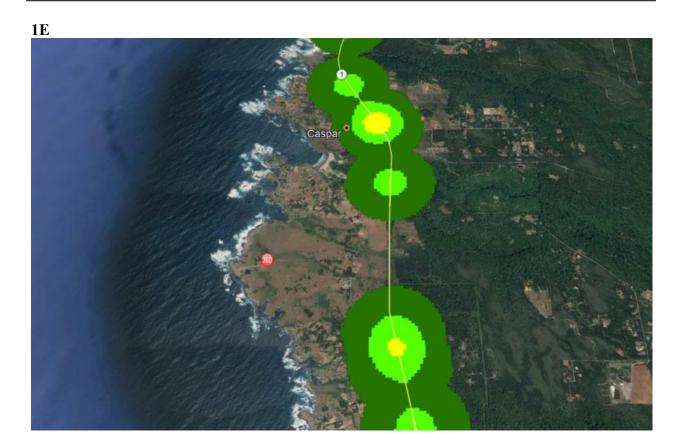

Hot spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	Most severe category	Total length (mi)	Length yellow (mi)	Length orange (mi)	Length red (mi)	Lanes (n)	Existing structure	AADT
4D	4	Contra Costa	Orinda	Hwy 24	4 CC 24 27	4 CC 24 19	orange	0.8	0.2	0.6	0.0	8	No	188000
4E	4	Contra Costa	Alamo	I-680	4 CC 680 116	4 CC 680 110	orange	0.6	0.3	0.3	0.0	6	No	153850
	5	Insufficient dat	a											
6A	6	Madera	Oakhurst	Hwy 41	6 MAD 41 393	6 MAD 41 196	red	19.7	2.6	0.6	0.3	2	No	19000
6B	6	Tuolumne	Three Rivers	Hwy 198	6 TUL 198 374	6 TUL 198 369	red	0.5	0.2	0.2	0.1	2	Yes	4525
6C	6	Tuolumne	Three Rivers	Hwy 198	6_TUL_198_440	6_TUL_198_400	yellow	4.4	0.6	0.0	0.0	2	Yes	3175
6D	6	Kern	Alta Sierra	Hwy 155	6 KER 155 491	6 KER 155 469	yellow	2.2	0.2	0.0	0.0	2	No	355
	7	Insufficient dat	a											
	8	Insufficient dat	a											
9A	9	Mono	Topaz Lake	US Hwy 395	9 MNO 395 1201	9 MNO 395 1178	orange	2.3	0.6	0.3	0.0	2	No	3900
9B	9	Mono	Walker	US Hwy 395	9 MNO 395 1143	9 MNO 395 1058	red	8.5	1.7	1.2	0.8	2	Yes	3550
9C	9	Mono	Walker	US Hwy 395	9 MNO 395 1032	9 MNO 395 1008	orange	2.4	0.5	0.1	0.0	2	No	3425
			Sonora											
9D	9	Mono	Junction	US Hwy 395	9 MNO 395 989	9 MNO 395 878	orange	11.1	3.6	0.7	0.0	2	Yes	3425
9E	9	Mono	Mono City	US Hwy 395	9 MNO 395 641	9 MNO 395 579	orange	6.2	0.8	0.1	0.0	4	Yes	3350
9F	9	Mono	Whitmore Hot Sprs.	US Hwy 395	9 MNO 395 282	9 MNO 395 134	red	15.6	2.4	0.6	0.1	4	Yes	7200
91	9	IVIOIIO	Spis.	US 11Wy 393	9 WINO 393 282	9 WINO 393 134	icu	13.0	2.4	0.0	0.1	4	1 08	7200
10A	10	Amador	Pine Grove	Hwy 88	10 AMA 88 377	10 AMA 88 149	red	22.6	10.8	10.2	0.5	2	No	8250
10B	10	Amador	Jackson	Hwy 49	10 AMA 49 58	10 AMA 49 0	orange	5.8	0.2	1.6	0.0	2	No	8100
10C	10	Tuolumne	Mono Vista	Hwy 108	10 TUO 108 154	10 TUO 108 0	orange	15.4	5.3	0.2	0.0	2	Yes	3975
10D	10	Tuolumne	Moccasin	Hwy 120	10 TUO 120 244	10 TUO 120 219	orange	3.0	2.0	0.2	0.0	2	Yes	4425
10E	10	Tuolumne	Groveland	Hwy 120	10 TUO 120 410	10 TUO 120 303	orange	10.7	2.1	0.1	0.0	2	No	6225
10F	10	Mariposa	Bootjack	Hwy 49	10 MPA 49 196	10 MPA 49 78	orange	11.8	3.0	0.3	0.0	2	Yes	5200
10G	10	Mariposa	Bootjack	Hwy 49	10 MPA 49 38	10 MPA 49 9	orange	2.9	1.1	0.1	0.0	2	No	3500
			, ,	22.1.3			8-			4,12		_		
	11	Insufficient dat	a											
12A	12	Orange	Peters Canyon Reservoir	Hwy 241	12 ORA 241 339	12_ORA_241_321	red	1.8	0.8	0.2	0.1	6	Yes	40150
12B	12	Orange	Las Flores	Hwy 241	12 ORA 241 170	12 ORA 241 150	orange	2.0	0.5	0.1	0.0	4	Yes	6900
			San Joaquin	,			5-	2.3	0.5	· · · ·	0.0	•		2,00
12C	12	Orange	Hills	Hwy 73	12 ORA 73 198	12 ORA 73 173	orange	2.5	1.0	0.2	0.0	8	Yes	67650
100			Peters Canyon	11 24	10 00 4 044 055	10 00 4 241 262	1,					_	***	47000
12D	12	Orange	Reservoir	Hwy 241	12 ORA 241 373	12 ORA 241 369	yellow	0.4	0.4	0.0	0.0	7	Yes	47800

Hot spot ID#	Dis- trict	County	Nearby town	Highway	Start hot spot	End hot spot	Most severe	Total length (mi)	Length yellow (mi)	Length orange (mi)	Length red (mi)	Lanes (n)	Existing	AADT
11/1#	trict	County	Rancho	Iligiiway	Start not spot	End not spot	category	(1111)	(1111)	(1111)	(1111)	(11)	structure	AADI
12E	12	Orange	Mission Viejo	Hwy 74	12 ORA 74 97	12 ORA 74 93	yellow	0.4	0.4	0.0	0.0	2	No	11100

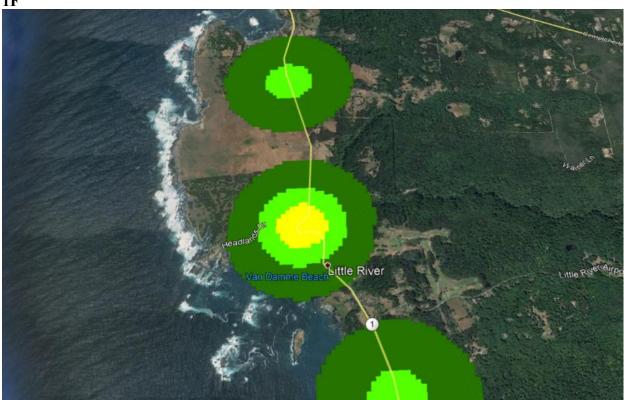
CARCASS DATA DISTRICT 1

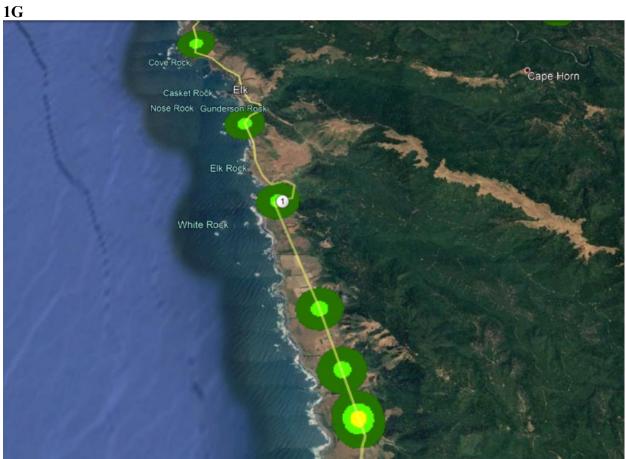


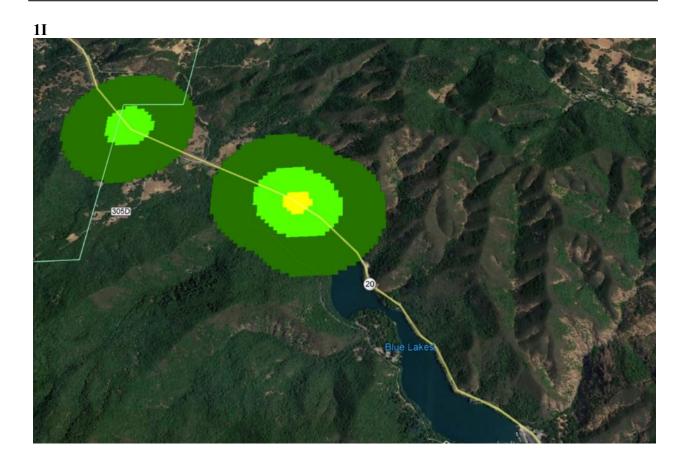
Hot spots in District 1 based on per district mule deer carcass data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix C) and the detailed maps on the following pages.

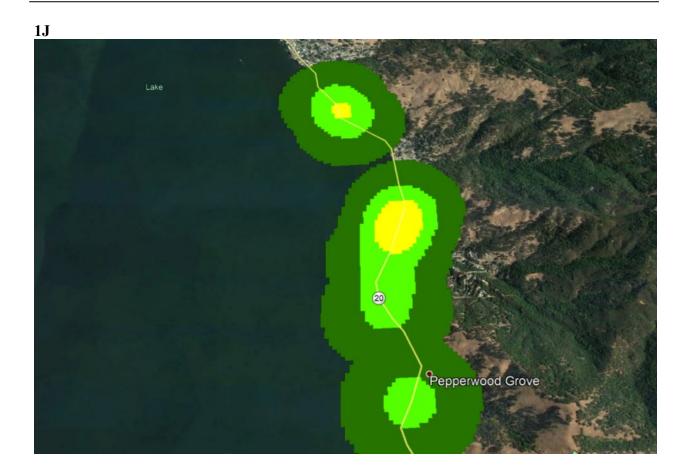


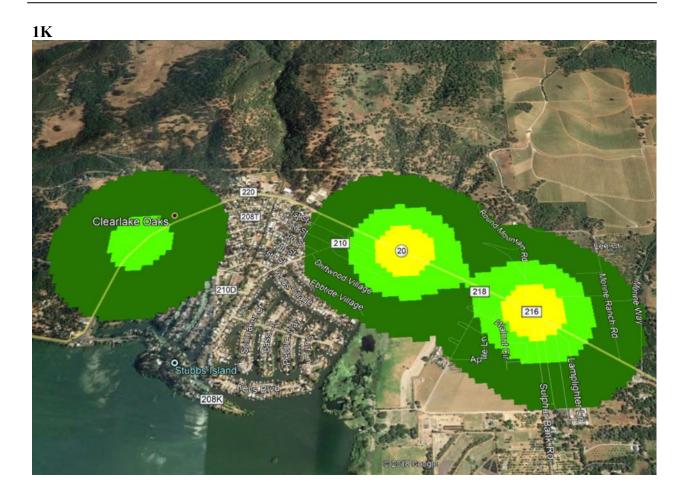
<u>1B</u>

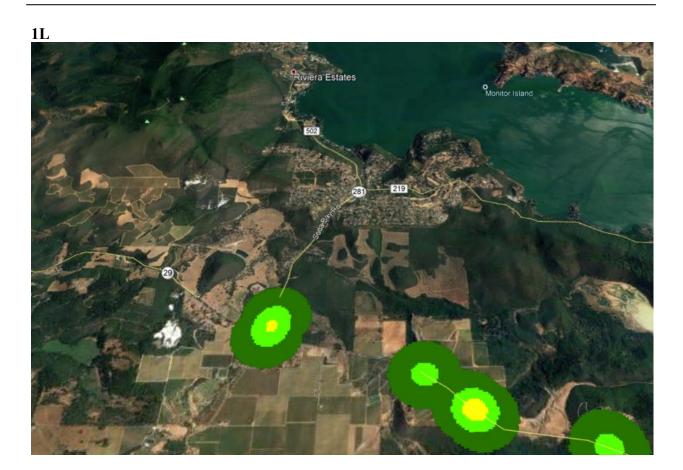


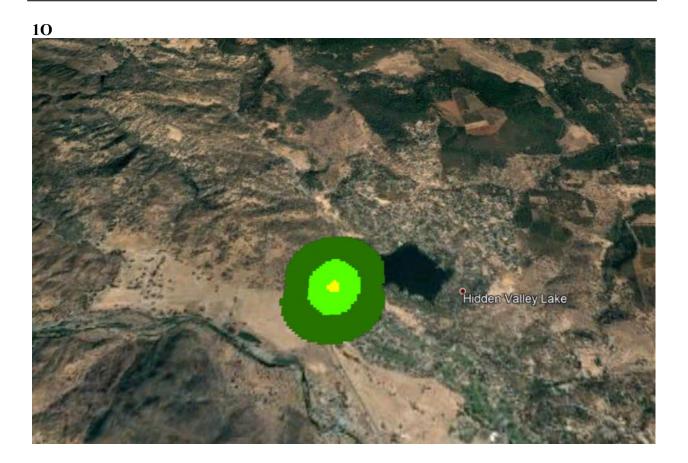


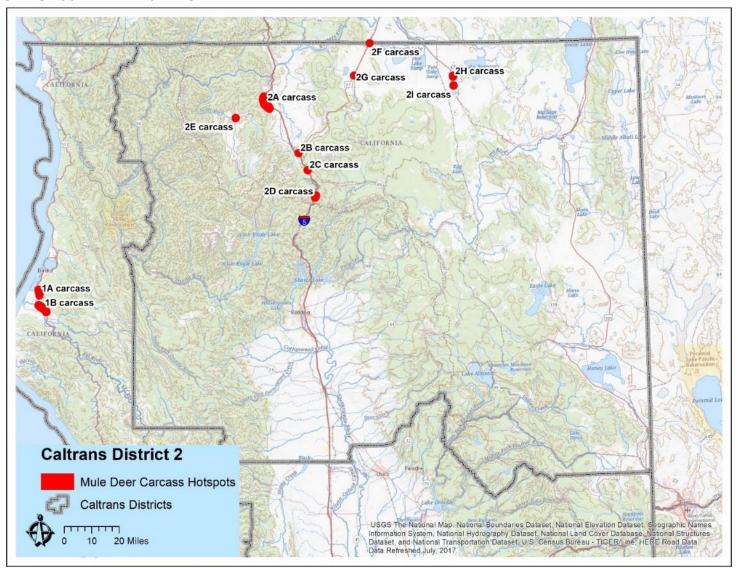


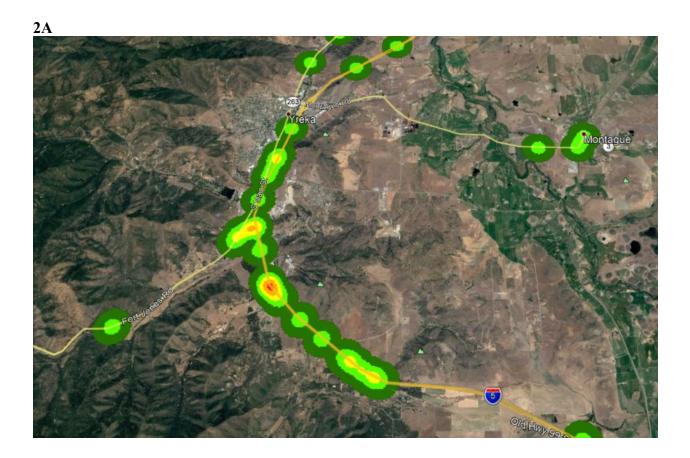

1F



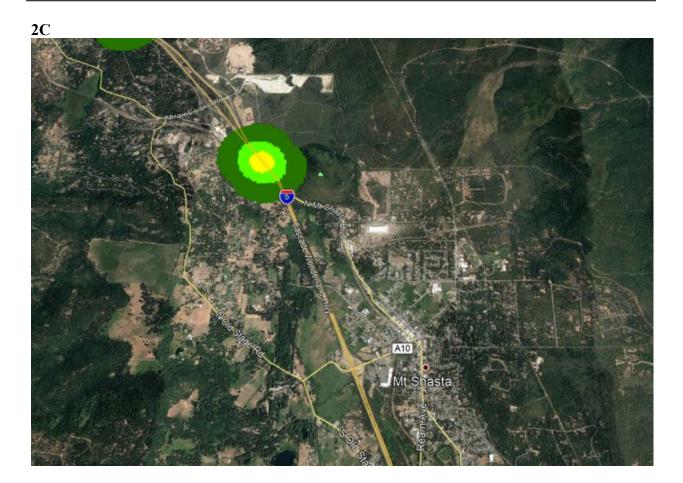






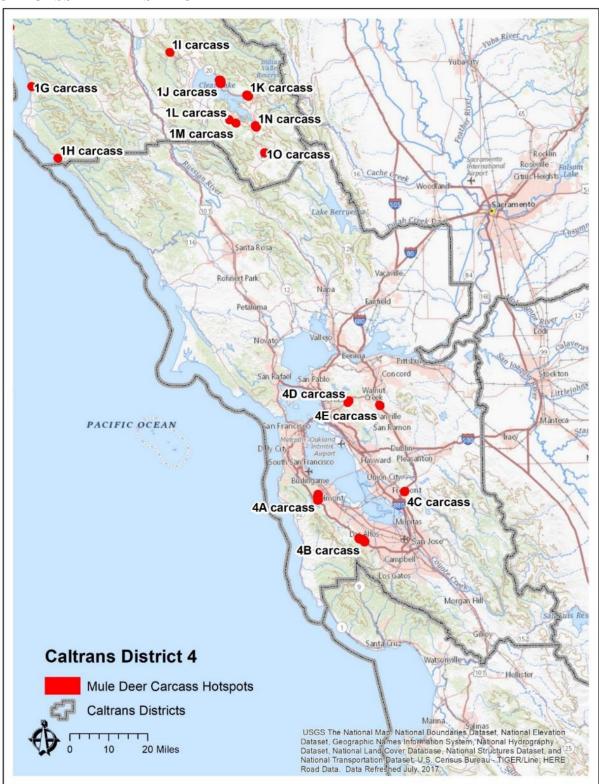


CARCASS DATA DISTRICT 2



Hot spots in District 2 based on per district mule deer carcass data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix C) and the detailed maps on the following pages.

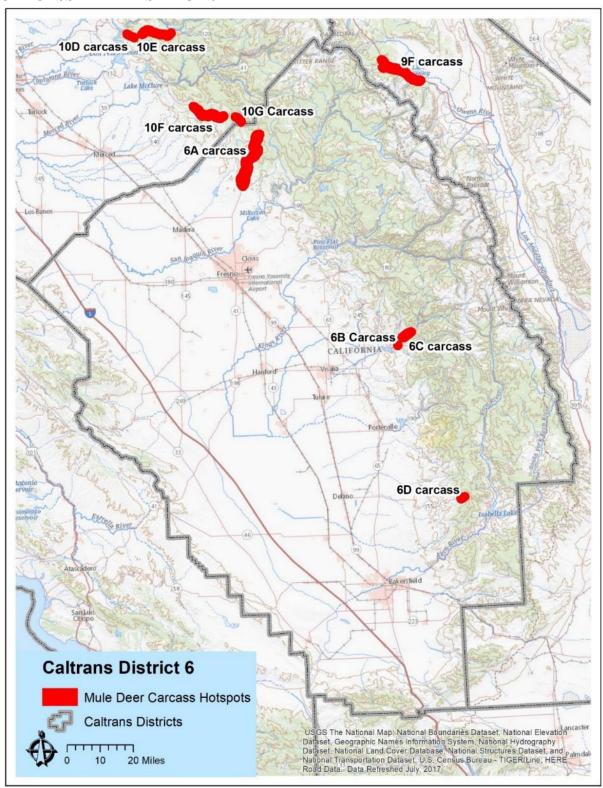
2B

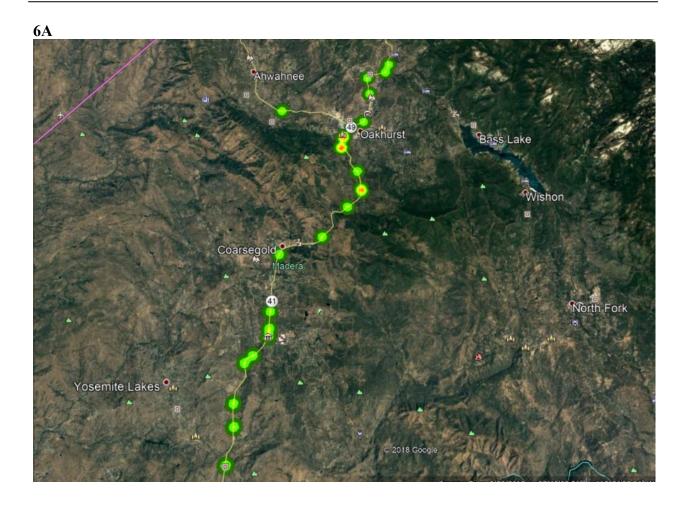

<u>2H</u>

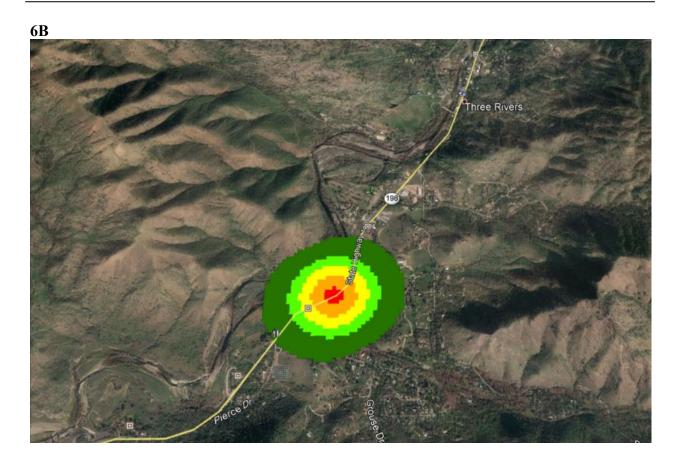
CARCASS DATA DISTRICT 3

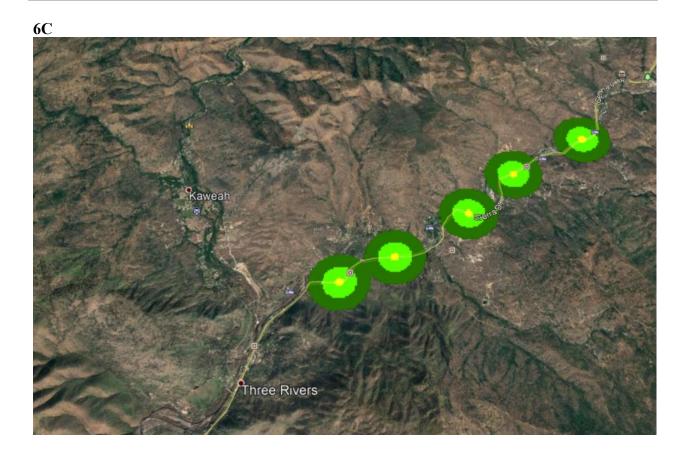
Insufficient data

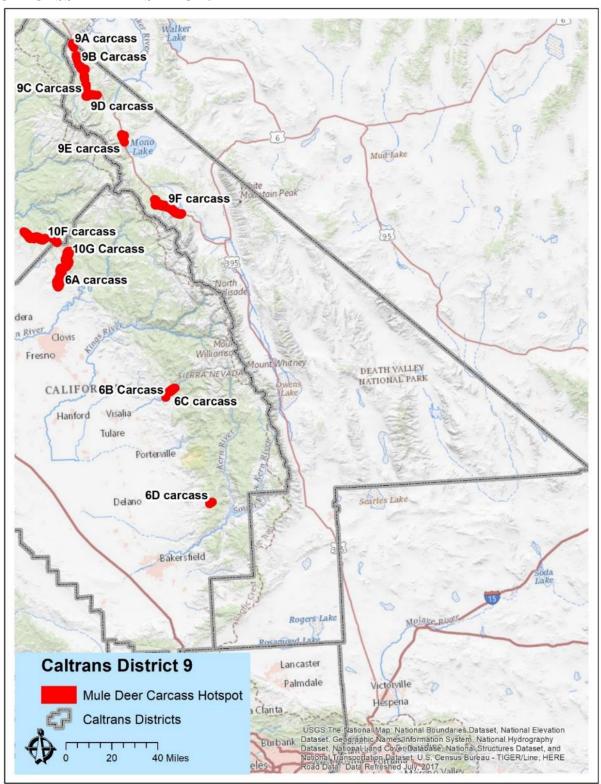
Hot spots in District 4 based on per district mule deer carcass data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix C) and the detailed maps on the following pages.

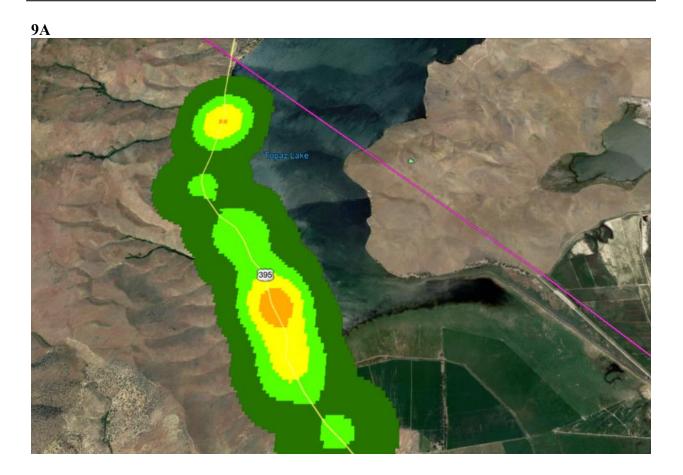


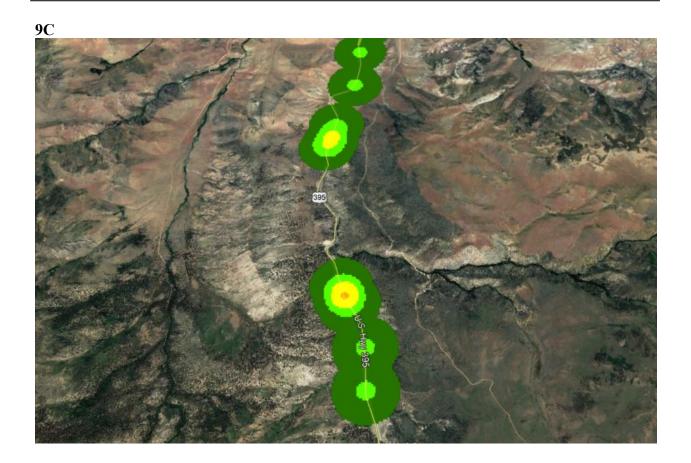


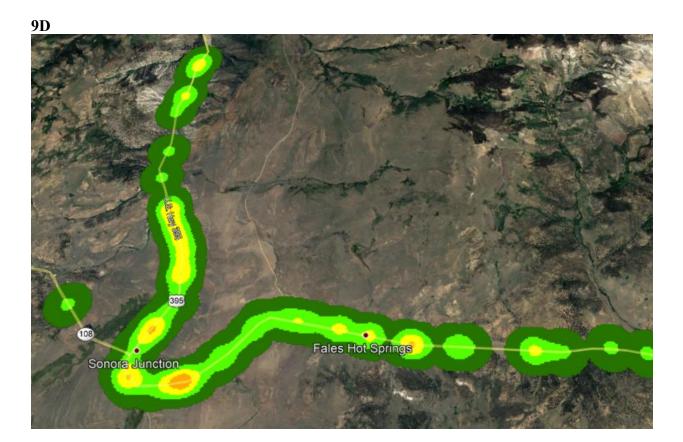




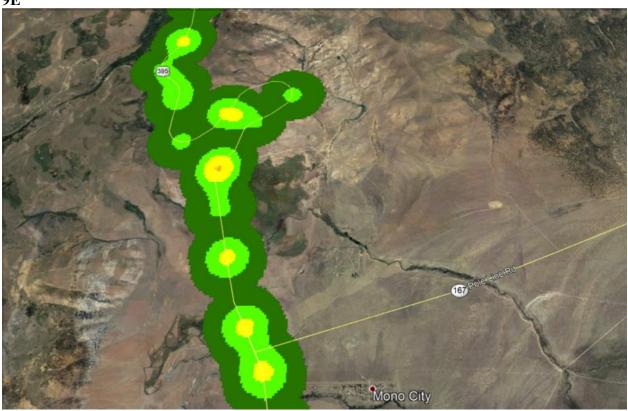

Hot spots in District 6 based on per district mule deer carcass data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix C) and the detailed maps on the following pages.

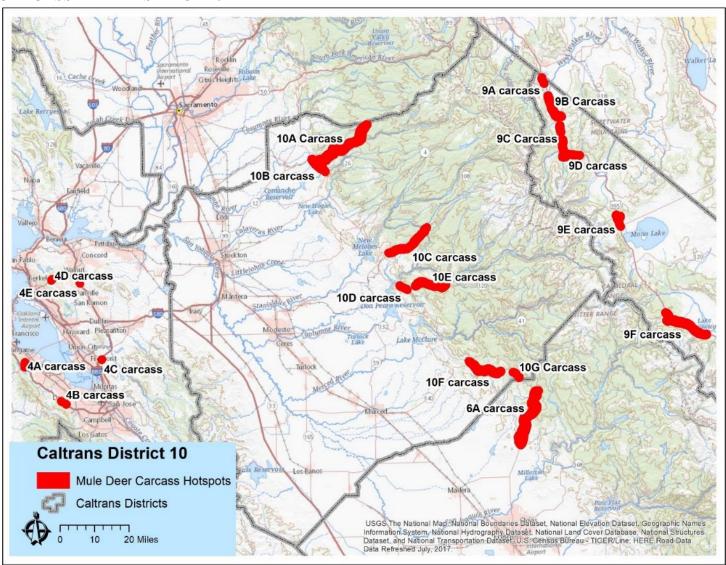


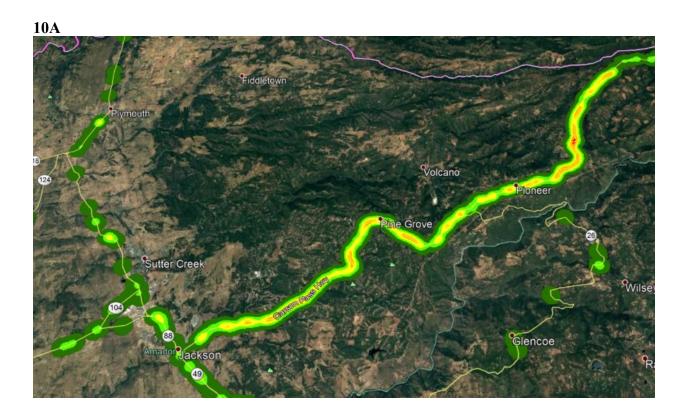


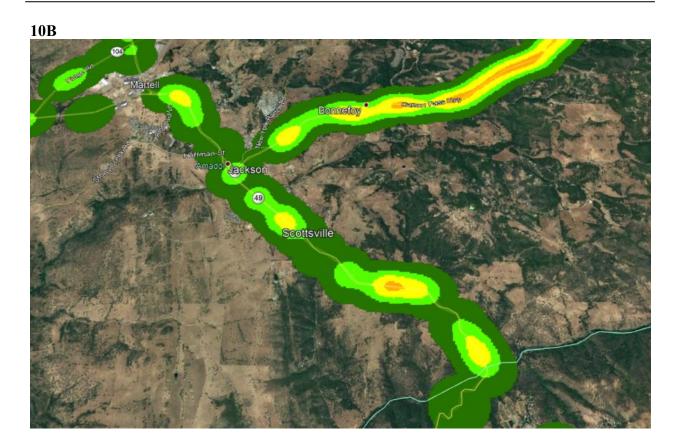


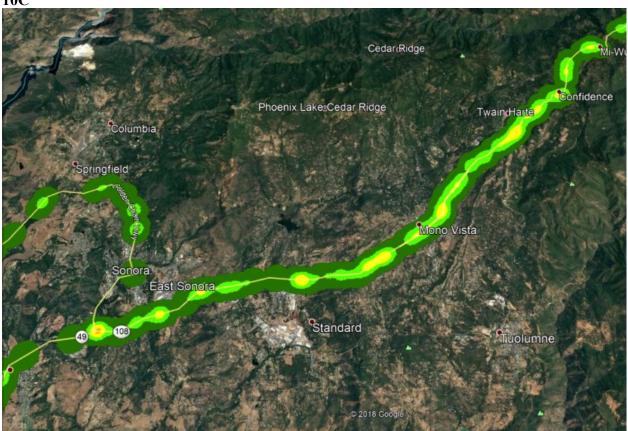
Hot spots in District 9 based on per district mule deer carcass data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix C) and the detailed maps on the following pages.

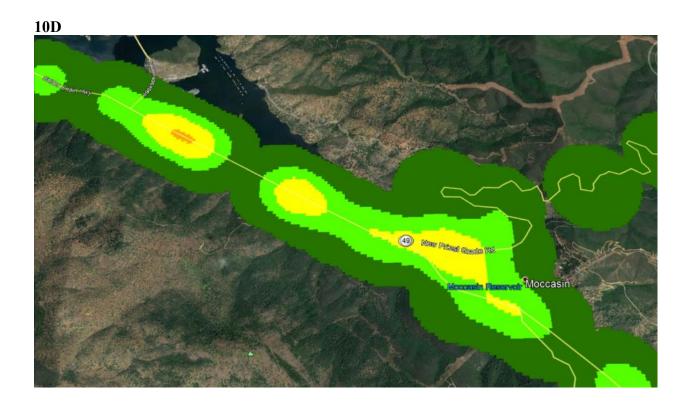


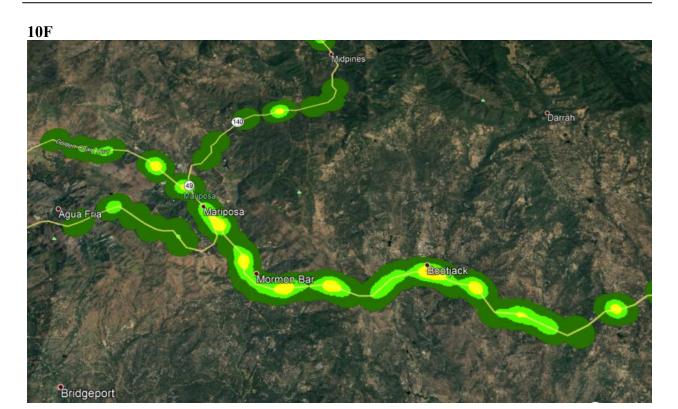


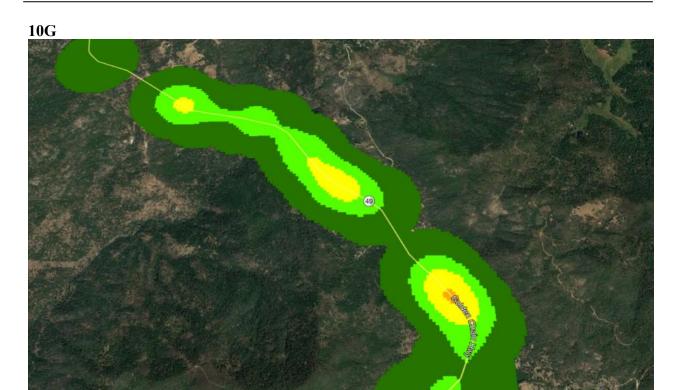

9E

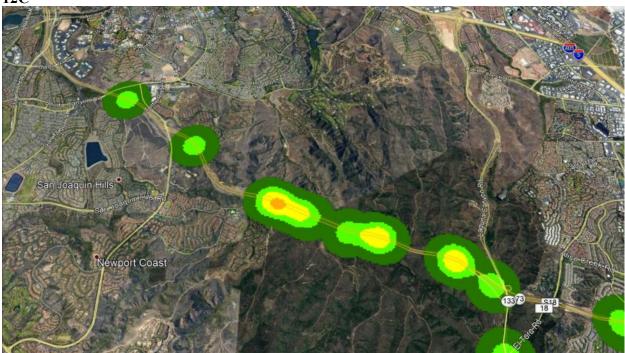





Hot spots in District 10 based on per district mule deer carcass data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix C) and the detailed maps on the following pages.




10C


Hot spots in District 12 based on per district mule deer carcass data (see Figure 1, page 13 for the location of the districts in CA). The numbers correspond with the table (second page of Appendix C) and the detailed maps on the following pages.

