Recommended Minimum Dreissenid Mussel Early Detection Monitoring

	Calcium	Dreissenid Mussel Biology*	Monitoring**
24 mg/L	High	 Adult mussels survive long-term. Reproduction and full life-cycle completion occurs. Introduced veligers and other life stages can survive. Calcium is not a limiting factor. 	 Plankton tows: Twice per month at water temperature 16-24 °C (61-75 °F) Once per month, 12-16 °C (54-61 °F) or 24-28 °C (75-82 °F) Surface surveys (and/or artificial substrates if no existing surfaces) checked at least monthly.
15	Moderate	 Adult mussels survive long-term. Reproduction can occur, but survivorship is reduced due to inadequate calcium for veliger development. Survivorship increases as calcium increases up to 24 mg/L. Minimum calcium required for veliger survival (> 0%): 15 mg/L for zebra mussels 18 mg/L for quagga mussels Introduced late-stage veligers likely to survive. 	 Plankton tows: Twice per month at water temperature 16-24 °C (61-75 °F) Once per month, 12-16 °C (54-61 °F) or 24-28 °C (75-82 °F) Surface surveys (and/or artificial substrates if no existing surfaces) checked at least monthly
12	Low	 Adult mussels survive long-term. Reproduction may occur, but veligers cannot survive. Introduced late-stage veligers may survive and settle. 	No plankton tows. Surface surveys (and/or artificial substrates if no existing surfaces) checked at least monthly.
	Very Low	 Adult mussels cannot survive long-term. Reproduction does not occur. Introduced veligers cannot survive. 	No plankton tows. Surface surveys (and/or artificial substrates if no existing surfaces) checked at least monthly.

^{*}Assumes suitable pH (>7.0) and salinity (<6 ppt).

^{**}Refer to monitoring protocols at CDFW's Quagga and Zebra Mussels webpage for more information.

References used to develop "Recommended Minimum Dreissenid Mussel Early Detection Monitoring"

- o Baldwin, B. S., M. Carpenter, K. Rury and E. Woodward. 2012. Low dissolved ions may limit secondary invasion of inland waters by exotic round gobies and dreissenid mussels in North America. Biological Invasions. 14(6): 1157-1175.
- o Cohen, A. N. 2008. Potential distribution of zebra mussels (*Dreissena polymorpha*) and quagga mussels (*Dreissena bugensis*) in California, Phase 1 Report, San Francisco Estuary Institute. Oakland, CA.
- O Davis, C. J., E. K. Ruhmann, K. Acharya, S. Chandra and C. L. Jerde. 2015. Successful survival, growth, and reproductive potential of quagga mussels in low calcium lake water: is there uncertainty of establishment risk? PeerJ 3: e1276.
- Mackie, G. L. and R. Claudi. 2010. Using physiological and ecological requirements and environmental tolerances for assessing risk of invasion. *In* Monitoring and Control of Macrofouling Mollusks in Freshwater Systems. CRC Press. 93-206.
- Prescott, K. and R. Claudi. 2012. Examination of water quality in Clear Lake, California for dreissenid mussel stability, RNT Consulting: 1-18.
- Whittier, T. R., P. L. Ringold, A. T. Herlihy and S. M. Pierson. 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (*Dreissena* spp). Frontiers in Ecology and the Environment. 6(4): 180-184.