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Executive Summary 

Section I 
We sought to develop a broadly applicable methodology for noninvasive DNA-based population 
monitoring of free-ranging elk (Cervus canadensis). Because elk tend to be more 
heterogeneously distributed across the landscape than other species, such as deer (Odocoileus 
spp), use of a simple random sampling design was expected to result in low survey efficiency. 
We therefore developed and evaluated a stratification approach involving a species distribution 
model (SDM) that we intended to be objective yet flexible enough to accommodate variable 
data sources. We constructed a preliminary SDM for three tule elk (C. c. nannodes) populations 
based on a variety of non-systematic sources of location data; used the model to guide a 
stratified random fecal pellet field sampling survey; estimated the improvement in detection 
efficiency obtained from the stratified surveys relative to a simple random sampling design; 
produced a refined model using a more rigorous procedure based on the systematically 
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collected detection data; and tested the preliminary and refined models against independent 
telemetry data and one another.  
 
To develop the preliminary SDM in a ~9,000 km2 region of Colusa and Lake Counties, we used 
1,207 location data points gathered from historical sight surveys, anecdotal reports, and 
hunter-harvest locations, along with bioclimatic and land cover variables, to produce a 
presence-based Maxent model.  Internal performance measures suggested reasonable 
discriminatory power of the preliminary model (AUC = 0.889). We then used this model to 
stratify the study area into 2-km2 grid cells coded for elk presence as high probability (HP) or 
low probability (LP), and randomly sampled from each category at a ratio of 2:1, respectively. 
We surveyed 54 cells (37 HP, 17 LP) 98 times across three populations during Jun–Aug 2017–
2019. We recorded 3,629 elk detections. Cross-validation of the preliminary model using these 
independent elk detections resulted in good model performance (AUC = 0.838). We also 
observed a strong correlation between model predictions and elk detections per km surveyed 
(r2 = 0.87), with an expected range of 2.8–26.0 detections per km corresponding to the model-
predicted relative probability of occurrence (RPO) ranging 0–1. Overall, the stratified random 
surveys resulted in 9.4 detections per km, compared to a predicted yield of 6.9 detections per 
km had we sampled randomly without stratification, resulting in a 36.7% increase in efficiency.   
 
To assess whether a more rigorous modeling approach would significantly improve 

performance, we employed a stepwise approach using the systematically collected data to 

construct and select among refined SDMs. We then tested both the preliminary and top-refined 

models against one another and with another independent data set, 47,445 telemetry locations 

from 78 GPS-collared elk (39 male, 39 female). The preliminary and top-performing refined 

models both exhibited robust discriminatory power as determined by the AUC (AUCPRE = 0.789, 

AUCREF = 0.780), true skill statistic (TSS) (TSSPRE = 0.445, TSSREF = 0.472), and percent correctly 

classified (PCC) (PCCPRE = 72%, PCCREF = 78%) evaluation metrics as indicated by telemetered 

individuals. Spatial comparison of these two models revealed a small (6%) reduction in 

predicted presence habitat from the preliminary to the refined model. The reasonably high and 

similar performance between these two models suggests little gain was achieved by the more 

rigorous modeling approach. Together, these findings suggest that a model-guided approach 

such as ours utilizing available data, even if non-systematically collected, can qualitatively 

improve sampling efficiency in surveys designed to collect noninvasive DNA samples for 

capture-recapture density estimation, and includes additional benefits, such as tangible spatial 

hypotheses involving environmental relationships and useful baseline information for further 

inquiries. 

 

Section II 

Monitoring trends in abundance of big game species in California has traditionally relied upon 

air- or ground-based minimum count surveys, which can be affected by visibility biases and 

unknown precision. In principle, noninvasive fecal DNA (fDNA)-based spatially explicit capture-



 

iv 
 

recapture (SCR) approaches can provide a statistically robust means of estimating abundance, 

which has been demonstrated for deer (Odocoileus spp).  However, fDNA SCR has not yet been 

widely used for more gregarious species, such as elk (Cervus canadensis).  Because of their 

heterogeneous use of the landscape and grouping behavior, elk present novel challenges to 

sampling efficiency and possibly statistical validity of fDNA SCR.  We employed fDNA SCR to 

estimate abundance in 3 northern California tule elk (C. c. nannodes) populations concurrent 

with but independent of GPS telemetry of 66 elk (32 male (M), 34 female (F)) in Colusa and Lake 

Counties, California, USA during Jun–Aug 2017–19.  We used a species distribution model 

(SDM) to stratify the landscape for weighted sampling in higher-probability habitat.  We 

collected 1,616 fecal pellet groups from the 3 populations, resulting in 1,002 fDNA genotypes 

(≥19 microsatellite loci, 1 sex marker) of 425 unique individuals.  Based on SCR estimates from a 

model incorporating both sexes, elk density ranged from 0.31 (95% CI = 0.17–0.55) elk/km2 to 

1.7 (95% CI = 1.3–2.2) elk/km2, translating approximately to 650 individuals (evenly split 

between M and F) among the three populations.  The even sex ratio agreed with that directly 

observed from genotyped pellet groups (510 F, 494 M), and within each population as well.  

Spatial analyses of telemetry data indicated that activity centers of females, but not males, 

were clustered on the landscape, a violation of SCR assumptions.  One population (Lake 

Pillsbury) exhibited extreme clustering of females, effectively sharing a single activity center.  

Comparison of combined-sex models to single-sex models indicated that SCR was robust to 

spatial clustering of females except in the most extreme case, Lake Pillsbury, and only when 

females were modeled without inclusion of males. In that case, the estimate of female 

abundance was considerably higher than other estimates and deemed an overestimate.  Thus, 

the inclusion of both sexes was apparently sufficient to offset biases potentially stemming from 

aggregation of females. Altogether, our findings suggest SCR methods can be gainfully applied 

to socially gregarious species such as elk.   
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I.  Evaluation of a species distribution model approach to guide noninvasive fecal-DNA 

surveys for tule elk (Cervus canadensis nannodes) in Northern California 

Introduction 

Big game population monitoring in much of the western USA has customarily relied upon proxy-
based measures of abundance to inform harvest quotas and other management strategies 
(Falcy et al. 2016).  These traditional methods, which include aerial and ground-based minimum 
count indices, as well as opportunistic visual counts, provide no means of assessing uncertainty 
(Caughley 1974; McCullough et al. 1994; Bleich et al. 2001; CDFW 2018). Consequently, wildlife 
agencies have increasingly strived to improve monitoring practices to incorporate statistically 
robust survey methods (Mason et al. 2006; Clare et al. 2017; Bush et al. 2020). One such 
approach to estimating abundance is noninvasive genetic capture-recapture (Lukacs and 
Burnham 2005). This approach, which uses DNA left in the environment (typically hair or fecal 
material), has been recently integrated into monitoring programs for a variety of species, most 
notably mule deer (Odocoileus hemionus) and black-tailed deer (O.h. columbianus), for which it 
has proven especially useful in environments where direct observation through traditional 
means is impractical (Brinkman et al. 2011; Lounsberry et al. 2015; Furnas et al. 2018; Brazeal et 
al. 2017; Furnas et al. 2018, 2020). Thus far, however, similar methods have not been widely 
applied to more gregarious species, such as elk (Cervus canadensis). 

Relative to deer, elk are more heterogeneously distributed across the landscape and are 
typically more gregarious, yet generally occur in lower frequencies, presenting unique 
challenges to sampling strategies (Mackie 1970; Jessup et al. 2014). For instance, most of the 
landscape may be unoccupied by elk, which impedes application of standard random sampling 
methods, which could result in high costs and countless hours of survey effort in areas 
unoccupied by elk that might otherwise have been excluded a priori (Stroud et al. 2014).  On 
the other hand, using subjective criteria to exclude certain areas from sampling without 
independent verification risks biasing estimates (Lancia et al. 2005). Thus, the goal of the 
present study was to employ a species distribution model (SDM) approach to predict elk 
distribution for the purpose of stratifying the landscape to guide unbiased and efficient surveys 
(Guisan et al. 2013; Fois et al. 2015; Fois et al. 2018). 

Traditionally, SDMs are created with presence-absence data. However, an increasingly popular 
alternative, Maxent, which uses presence-only data, performs well compared to other SDM 
approaches (Phillips et al. 2006; Baldwin 2009; Renner and Warton 2013; Law et al. 2017). The 
Maxent software applies maximum-entropy principles towards modeling species distributions 
based on a set of predictive environmental variables, and random background points as a 
surrogate for true absence data (Phillips et al. 2006).  

To broadly apply an SDM approach, it is important that modeling be as standard as possible. 
However, sources of available data and particular environmental predictors differ among study 
populations and sites (Virgili et al. 2017; Bucklin et al. 2015), which potentially limits the degree 
to which modeling procedures can be standardized. By keeping models relatively simple, for 
example, using no more than 3–6 predictor variables, it may be possible to achieve the model’s 
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purpose ─ enhancing the efficiency of surveys ─ despite sacrificing some realism that might be 
achieved with more sophisticated variable sets and procedures (Halvorsen et al. 2016).   

In this study we explored the robustness of readily available data and a simple modeling 

technique and compared and evaluated models built simply from opportunistic data versus 

based on systematically collected data and a more rigorous modeling process. We conducted 

this study on three populations of tule elk (C. canadensis nannodes) in Colusa and Lake 

Counties, CA (Fig. 1). Our approach with Maxent was as follows: (1) use a combination of 

available data to generate a preliminary SDM for elk, (2) dichotomize the preliminary model 

and use it to guide a systematic, stratified random survey, (3) test the predictions of the 

preliminary SDM against the presence data collected during sampling and estimate the 

efficiency gained by stratification, (4) generate a refined SDM with the presence data collected 

during field surveys, (5) compare the predictive capabilities between the preliminary and 

refined SDMs against each other and an independent data set composed of telemetry locations 

from 78 individual elk. 

Study Area 

The study area consists of the Cache Creek, Bear Valley, Lake Pillsbury, and East Park Reservoir 
management units (MUs) as well as the entirety of Lake County, which occurs within 
approximately 9,000 km2 of California’s Coast and Interior Coast mountain ranges (CDFW 2015; 
CDFW 2018) (Fig. 1). The climate is described as Mediterranean with hot, dry summers and 
mild, wet winters (Kauffman 2003). Year-round temperatures generally range from below 0 o C 
in the winter to summer daytime temperatures exceeding 38 o C (Phillips 1976; CDFW 2018). 
Average annual precipitation is ~76 cm, most of which occurs from October through May 
(Ferrier and Roberts 1973; BLM 1986). Major year-round water sources include Cache Creek 
and Bear Creek, Lake Pillsbury and the Eel River, and East Park Reservoir and Stony Creek in the 
Cache Creek/Bear Valley, Lake Pillsbury, and East Park Reservoir MUs, respectively (Phillips 
1976; CDFW 2018). Most of the topography involves rugged, broken terrain, with rolling 
foothills and flats interspersed throughout jagged peaks and valleys. Elevation ranges from 30 
m in the plains of the Sacramento Valley to 2,176 m at Black Butte Mountain. The dominant 
vegetation communities are typical of the California Coastal range which include blue oak 
(Quercus douglassii) woodland, perennial grassland, chamise (Adenostoma fasciculatum)-
chaparral, mixed conifer and hardwood forests, annual grassland, and agricultural pastures 
(McCullough 1969; O’Connor and Guitierrez 1986; O’Connor 1987; BLM 1982; CDFW 2018).  

Methods 

Population Range Boundary Estimates 

We defined range boundaries for each population via reference of historical survey data from 
the United States Bureau of Land Management (BLM) (BLM 1972, 1977, 1978, 1979, 1980, 
1981, 1982, 1983, 1985, 1986, 1989, 1992; Ferrier 1972a-d), the CDFW (Bower 1956; Brandvold 
1969; Booth et al. 1988; California Department of Fish and Game [CDFG] 1974, 1978, 1980, 
1982, 1987, 1989, 1991, 1995, 1998, 2002, 2004; CDFW 2018; Conover 1972; Curtis 1982; Smith 
1973; Bush et al. 2020), and formal studies (McCullough 1969; Ferrier and Roberts 1973; Phillips 
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1976; O’Connor 1987). To generate contemporary borders, we digitized historical estimated 
range boundaries in GoogleEarth Pro (v. 7.3.2; Google Inc., 2005), converted the keyhole 
markup language (.kml) to polygon in ArcGIS (v. 10.4; ESRI 2011), and combined historical 
estimated range boundaries to form the greatest sized polygon for each population 
independent of one another. Digitization and consolidation of historical range boundary 
estimates and more recent observation data resulted in the production of range boundary 
estimates of 706 km2 at Cache Creek, 189 km2 at Lake Pillsbury, and 200 km2 at East Park 
Reservoir (Fig. 1). 

Selection of Environmental Variables for the Preliminary and Refined Models 

We selected covariates from a pool of 27 environmental variables including abiotic, bioclimatic, 
ecological, topographic, and vegetation data (Supplementary Table 1). We referenced all raster 
layers using the WGS84 geographic coordinate system and resampled each layer to a resolution 
of 15 arc seconds (~0.50 km2). We used the 19 bioclimatic variables from the WorldClim 
database (e.g., annual mean temperature, isothermality, annual precipitation, etc.) (Hijmans et 
al. 2005). We derived three topographic layers (elevation, slope, and aspect), as well as two 
vegetation layers (existing vegetation cover, existing vegetation height) from the Landscape Fire 
and Resource Management dataset to characterize terrain and vertical vegetation structure 
(LANDFIRE 2013a-b). We created a distance to water layer using the Model Builder tool in 
ArcGIS (v. 10.4) derived from the USA Surface Water Dataset (ESRI 2013). We used an available 
data set to characterize soil taxa (Web Soil Survey 2017), and a habitat layer derived from the 
California Wildlife Habitat Relationships (CWHR) database compiled by the California 
Department of Forestry and Fire Protection (CalFIRE 2015).  

We used two separate approaches to select the variables for the preliminary and refined 
models, both of which used an “unsupervised” fitting procedure (e.g., Seoane et al. 2005). For 
the preliminary model, we began with the full dataset of 27 variables and allowed the internal 
regularization function within the Maxent algorithm to determine the most informative 
variables. We included or excluded variables depending on training gain, which indicates 
relative predictive power (Kumar et al. 2014). We ran multiple iterations of Maxent to explore 
variable contributions to achieve a reduced subset of environmental covariates. For example, 
we excluded variables that contributed <10% to the model in the previous run to achieve the 
most parsimonious output (Baldwin 2009; Kumar et al. 2014).  

For the refined model, we again started with the full dataset of 27 variables. However, rather 
than allow Maxent’s internal regularization function to determine the most informative 
variables, we first reduced the number of variables to the least inter-correlated using the 
vif.step function in Program R package usdm (Naimi 2015) to calculate the variation inflation 
factor (VIF) for all variables. The VIF is an index of collinearity derived from regressing the 
predictor variable against all other covariates. We used the vif.step function to exclude all 
variables with a VIF >4 (O’Brien 2007; Henseker et al. 2015). 

Occurrence Records for the Preliminary Model 

We compiled known detections of elk presence within the study area through four primary 
means to provide presence data for production of the Maxent model: historical survey data 
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(<2005), contemporary survey data (2005–2015), hunter harvest reports (2011–2015), and non-
standardized road and ground surveys (2016). We considered elk presence to include direct 
observations of elk, elk harvests, and detections of elk sign including tracks, pellets, bedding 
areas, hair, antler casts, carcass remains/roadkill, rubs, and scrapes. Because these data were 
sourced over a cumulatively long period and using different approaches, we considered the 
data independent.  Although we acknowledge these data did not constitute a random sample, 
they were the best data we could obtain and provided a good test case for the types of data 
likely to be more broadly available to other studies (Virgili et al. 2017). 

Preliminary Model and Stratification of the Study Area 

We used Maxent (v. 3.4.1; http://www.cs.princeton.edu/~schapire/maxent/) to produce the 
preliminary model (Phillips et al. 2006). While Maxent is capable of fitting highly complex 
models, simpler models are more interpretable, less vulnerable to model overfitting, and less 
sensitive to sampling bias (Yackulic et al. 2013). Keeping models simple was also important to 
our goal of keeping the procedures broadly applicable. Feature classes in Maxent determine the 
types of constraints and complexity allowed by a model, and can either be used singly or in 
various combinations (Baldwin 2009; Brown et al. 2017). We applied the least complex feature 
types, linear and quadratic, to produce the model (Syfert et al. 2013). We applied 10,000 
random background (“pseudo-absence”) points within the entirety of the study area (e.g., Fig. 
1) and left all other parameters to the default Maxent setting (Pearson et al. 2007; Barbet-
Massin et al. 2012). We used the cross-validate function to partition testing and training data, 
and also used a jackknife procedure to assess model performance for each covariate (Pearson 
et al. 2007).  

We tentatively measured model performance using the receiver operating characteristic (ROC) 
curve, specifically, the area under the ROC curve (AUC) (Phillips et al. 2006), with the evaluate 
function in the R package dismo (Hijmans et al. 2017). The AUC is a threshold-independent 
measure interpreted as the probability that a randomly chosen presence location is ranked 
higher than a randomly chosen background location (Merow et al. 2013). The AUC ranges from 
0.5 to 1, where 0.5 shows no discrimination between presence and background points (i.e., the 
model result is no better than a random selection), and 1 shows the highest level of 
discrimination (i.e., the model predictions are perfect); generally, an AUC ≥ 0.7 indicates good 
discriminatory power (Hosmer and Lemeshow 1989). Overfitting of models is indicated when 
the AUC estimated from the same data used to train the model (AUCTRAIN) is substantially higher 
than the AUC estimated from data left out of the training set used in a cross-validation test 
(AUCTEST). Therefore, we calculated both AUCTRAIN and AUCTEST and used the difference as an 
indication of overfitting. 

We expressed model predictions using the logistic transformation to produce a relative 
probability of occurrence (RPO), estimates analogous (but technically not identical; Yackulic et 
al. 2013) to probability of occurrence (Baldwin 2009). We also converted the continuous SDM 
predictions into a binary surface of predicted presence versus predicted absence pixels (Hirzel 
et al. 2006). We chose a threshold designed to optimize between maximizing sensitivity (the 
proportion of presences correctly predicted) and minimizing the area of predicted presence 
(analogous to false positive rate or 1 – specificity [the proportion of absences correctly 

http://www.cs.princeton.edu/~schapire/maxent/
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predicted]; Phillips et al. 2006; Quinn et al. 2018). Specifically, we selected the maximum 
difference of the proportion of occurrence localities versus unconstrained (i.e., across the 
whole study area) background locations (Engler et al. 2004). 

Using the Preliminary Model to Design Validation and Refinement Survey  

To stratify the study area for sampling into high probability (HP) and low probability (LP) 2 km2 
sampling cells, we used a procedure analogous to that used to dichotomize the model.  
Specifically, we classified each cell according to its cumulative within-cell average RPO into one 
of two strata: HP (average RPO ≥ binary threshold) or LP (average RPO < binary threshold), 
where the binary threshold was the same one described above. To select a pool of 90 candidate 
cells for sampling, we randomly selected 60 HP cells and 30 LP cells for a 2:1 (HP:LP) ratio to 
favor cells expected to have more elk. Ultimately, the numbers and ratios varied somewhat due 
to constraints posed by accessibility, e.g., permission granted by private landowners and 
cooperative agreements with state and federal agencies. 

Field Sampling  
Once sampling cells were selected, we conducted foot surveys during Jun–Sep of three years, 
2017–2019. During surveys, we collected fecal pellets, which were used for estimating 
abundance via mark-recapture analysis in a companion study (Batter et al., Ch 2), and, in this 
study, as indicators of elk presence. We additionally recorded direct observations of elk, 
hunter-harvested elk, and other elk sign, including tracks, bedding areas, hair, antler casts, 
carcass remains/roadkill, rubs, and scrapes.  We surveyed cells using 6-km triangle transects 
whenever possible, but used 4.5-km out-over-and-back parallel transects when terrain or land-
use permission did not permit triangular routes (Appendix A). During sampling, we used a hand-
held Global Positioning System (GPS) device to record survey tracks and the location of each elk 
detection. 

Model Performance and Efficiency 

To compare the preliminary SDM model against survey detections, we measured model 
performance using the AUC as described above, except that we substituted the independent 
detection data set for the input data. Second, we directly quantified the correlation between 
model predictions (RPO) and the number of detections per km surveyed. We used detections 
per km surveyed to quantify the overall efficiency of the survey. To estimate the gain in 
efficiency obtained through our stratified random sampling versus a simple random design, we 
first had to estimate the efficiency that would have been obtained through a simple random 
design. To do so, we extracted the RPO value for each of the 10,000 preliminary background 
points and multiplied the proportions of locations falling in each of 5 RPO classes (RPO <0.1, 
0.1–0.3, 0.3–0.5, 0.5–0.7, 0.7–1.0) by the corresponding number of detections per km surveyed 
in that range and by the total number of km surveyed; we then summed these to obtain the 
estimated number of detections that would have been obtained had we employed the same 
sampling effort randomly. The increase in efficiency was determined as the ratio of the number 
of detections recorded divided by this estimate minus 1. 

Refined Model 
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Because the preliminary model was necessarily based on opportunistic data sources, we also 
wished to assess whether a more rigorous approach to modeling based on the systematically 
collected data might have qualitatively increased the value of the model for guiding surveys. 
We modeled the presence data collected during our 3-year survey using Maxent implemented 
in the R package ENMeval (Muscarella et al. 2014). This modeling process was similar to the 
preliminary modeling except that we made several refinements with the goal of optimizing 
model accuracy. First, to avoid biases from use of unrepresentative pseudo-absence data (Lobo 
et al. 2008; Elith et al. 2011; Royle et al. 2012), we constrained the background extent to limit 
model training closer to areas we surveyed (i.e., regions where we could have reasonably 
detected elk if they were present). We created a 10 km buffer layer around occurrence points 
from the full dataset in ArcGIS (v. 10.7.1; ESRI 2019) and populated the region with 10,000 
random points within the aggregate buffered area for use as background points in model 
production and analysis (Barbet-Massin et al. 2012). Otherwise, our approach involved the 
following steps: (1) construct 4 datasets with varying degrees of thinning to ensure 
independence, (2) partition each of these datasets into a user-defined and a checkerboard 
scheme, totaling 8 competing datasets, (3) construct models using varying feature class and 
regularization multiplier (β) combinations using each dataset, and (4) select the best model for 
each of the 8 datasets.   

Thinning.—In contrast to our first dataset for which independence of data points could be 
reasonably assumed in most cases, our survey data used for the refined model were not 
spatially independent and therefore required us to thin data to avoid pseudo-replication, which 
can lead to model overfitting and inaccurate predictions (Phillips et al. 2009). We used the R 
package spThin (Aiello-Lammens et al. 2015) to reduce the full dataset into subsets spatially 
filtered at values of 100 m, 500 m, and 1 km each (see below).  

Partitions.—Next, to divide data for training and testing, we binned each of the 4 thinned 
datasets into two a priori masked geographically structured partitions (Muscarella et al. 2014). 
We first subdivided the study area into a two-scale checkerboard grid using the ‘checkerboard2’ 
partitioning method (Radosavljevic and Anderson 2014). Occurrence and background points 
were assigned to 4 bins (Supplementary Fig. 1A). For the user-defined partition, we a-priori 
clustered 4 groups based on MUs with the ‘user’ partition method. We assigned occurrence and 
background points into one of four groups based on the internally identified mean centroid of 
each cluster (Supplementary Fig. 1B).  

Feature classes and regularization.—We considered 3 feature class combinations with the 
optimum regularization multiplier (β) value: linear (L), linear-quadratic (LQ), and linear-
quadratic-product (LQP). The β multiplier is a coefficient designed to help reduce model 
overfitting by imposing a penalty for each term included in the model (Tibshirani 2011; 
Radosavljevic and Anderson 2014). Here we considered a β multiplier range from 0.5-7 with 
steps of 0.5. 

Model selection.—To select the best model within each of the 8 datasets resulting from the 
thinning and partitioning, we used Akaike’s Information Criterion, adjusted for small sample 
size (AICc; Hurvich and Tsai 1989), and created a pool of eight competing models from which to 
measure and compare overall model performance.  
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Model Evaluation and Comparison 

Although internal validation measures (i.e., using some portion of the input dataset; Merow et 
al. 2013) are useful for assessing fits of alternative models during the model-construction 
process, they often exhibit the same biases as the data used to train the model and are 
therefore insufficient on their own to assess model accuracy (El-Gabbas and Dormann 2018).  
For this reason, use of independent data to test model performance is ideal (Halvorsen et al. 
2016). To test our suite of models, we obtained an independent dataset of telemetry locations 
from 78 GPS-collared tule elk (39 male, 39 female) collected within the study region via satellite 
during December 2016–October 2019. Capture procedures involved ground-based free-range 
darting/chemical immobilization and air-based net-gunning/manual restraint of adult male and 
female elk. All capture activities were performed by CDFW personnel and followed guidance 
and approval from the CDFW Wildlife Investigations Laboratory (CDFW 2018). Elk were fixed 
with GPS Collars (Model: LifeCycle 800 GlobalStar, Lotek Wireless, Newmarket, Ontario, 
Canada) programmed to collect latitude and longitude of the elk’s location every 13 hours and 
stored via the Lotek WEB Service (http://www.webservice.lotek.com). Collar data were 
downloaded and aggregated into one dataset. We also used the kernel density spatial analyst 
tool in ArcGIS (v. 10.7.1; ESRI 2019) to create a smoothly tapered surface to each point across 
all three populations (i.e., the “realized distribution”) for visual comparison against detections 
recorded during field sampling. 

In addition to testing with independent data, simultaneous use of different evaluation metrics 
is also recommended, particularly when true absence data are unavailable (Jiménez-Valverde 
2012). While the AUC is useful in measuring how well presence locations can be discriminated 
from absences based on predictor variables, it provides little information on how well the 
model predictions fit the species distribution (Lobo et al. 2008). Therefore, in addition to the 
AUC, we evaluated models against the independent telemetry data set using the true skill 
statistic (TSS) (Allouche et al. 2006), and percent correctly classified (PCC) evaluation metrics 
(West et al. 2016; Luo et al. 2017).  

In contrast to the AUC, the TSS is a threshold-dependent measure of the accuracy of a pre-
determined binary SDM which places equal weight on model sensitivity and specificity 
(Allouche et al. 2006). Furthermore, under certain assumptions and with large sample sizes, this 
measure is independent of prevalence (the proportion of sites in which the species was 
observed present) (Somodi et al. 2017). Values can range from -1 to 1, with scores closer to 1 
indicating greater model performance (West et al. 2016). Models with TSS scores ≥0.40 are 
considered to perform well (Landis and Koch 1977; Soultan and Safi 2017).  

The PCC is a simple proportion of test observations correctly classified based on a 
predetermined threshold of a binary SDM (VanDerWal et al. 2012). Similar to AUC, PCC is a 
proportional index; resultant values closer to 100% indicate better model performance (York et 
al. 2011). We calculated the AUC as described above for the preliminary and refined models, 
and calculated the TSS and PCC using the accuracy function in the R package SDMtools 
(VanDerWal et al. 2012). 

We thinned the telemetry data with the R package spThin to reduce the full independent 
datasets into three subsets matching the resolution of the calibration dataset for validation 

http://www.webservice.lotek.com/
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(100 m, 500 m, and 1 km).  Lastly, we used the ArcGIS toolkit SDMtoolbox (Brown et al. 2017) to 
visualize and quantify changes in binary distribution predictions between the preliminary and 
refined model (Khosravi et al. 2016).  

Results 

Preliminary SDM 

We gathered 1,207 tule elk presence data points for the preliminary model input (Table 1). We 
identified a combination of 3 covariates through the internal regularization algorithm that best 
predicted tule elk distribution: habitat type (CalFIRE 2015), vegetation cover (LANDFIRE 2008), 
and mean diurnal temperature range (“bio2” in the WorldClim dataset). The resultant 
preliminary model yielded an AUCTRAIN value of 0.889 and an AUCTEST value of 0.885 supporting 
good model performance (Phillips and Dudik 2008). The small difference between these values 
(0.004) suggested the model was not overfit. The contribution of preliminary covariates in 
order of permutation importance was bio2, habitat type, and vegetation cover (Supplementary 
Table 2). The predicted RPO increased positively with bio2 (Supplementary Fig. 2A), and tended 
to be higher in perennial grassland, hardwood-conifer, lacustrine, annual grassland, and blue 
oak-valley oak habitat types (Supplementary Fig. 2B), and with increasing herb cover and 
reduced shrub and tree cover (Supplementary Fig. 2C). Visual inspection of the predictive 
surface revealed several concentrated areas of high RPO, connected by corridors corresponding 
approximately to waterways (Figs. 2A, Supplementary Fig. 3). 

We next identified the optimal binary classification threshold at RPO = 0.15, which resulted in a 
dichotomized binary map (Fig. 2B) that we used to classify 2-km2 cells into high probability (HP) 
or low probability (LP) cells (Fig. 2C). In total 487 (25%) of 1,944 cells were classified as HP.  

We sampled 54 cells 98 times across all three populations over three survey years: 33 cells (24 
HP; 9 LP) at Cache Creek (in 2017 and 2019; 66 surveys), 11 cells (7 HP; 4 LP) at Lake Pillsbury 
(2018, 2019; 22 surveys), and 10 cells (6 HP; 4 LP) at East Park Reservoir (2018; 10 surveys). Our 
field validation efforts produced 3,629 elk location points (Table 2). Elk were detected at Cache 
Creek in 22 (92%) of 24 HP cells and 5 (55%) of 9 LP cells across both survey years; in all cells at 
Lake Pillsbury across both survey years; and in all cells at East Park Reservoir in 2018.  

Cross-validation of the independent elk detections with the preliminary logistic surface 
supported good model performance (AUC = 0.838), only slightly lower than that estimated 
using the cross-validated input data set (i.e., AUC = 0.885). Additionally, the number of 
detections per km surveyed were positively correlated with the RPO (r = 0.933, r2 = 0.87, F1,3 = 
20.2, P = 0.021; Fig. 3). The expected number of detections per km surveyed (�̂�) increased 
significantly as a function of RPO (x), resulting in a range of expected efficiencies of 2.8–26.0 
detections per km corresponding to the observed range of model RPO on the study area.  

In total, we obtained the 3,629 detections over 386.5 km of transect surveyed, for an estimated 
efficiency of 9.39 detections per km surveyed. Using the random background points to indicate 
composition of the study area with respect to the RPO ranges and the observed numbers of 
detections per km surveyed in each of the RPO ranges, we estimated that a simple random 
survey of 386.5 km of transects would have yielded 2,655 elk detections, resulting in 6.87 
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detections per km surveyed. Thus, a 36.7% increase in efficiency was attributable to the 
stratified design we employed (i.e., 9.39/6.87 – 1). 

Comparison of the elk detections in our survey to the independent kernel density of all 
telemetry locations (n = 47,445) support the representativeness of our survey (Fig. 4). Elk 
detections across all three populations were in relatively high agreement with areas of elk use, 
and increased comparably within concentrated high-use areas (Fig. 4A–C). The 4 sampled cells 
where we did not detect elk also did not have any telemetry occurrences within them (Fig. 4C). 
Finally, all elk detections superimposed on the binary predictive surface occurred ≤500 m from 
predicted presence classified pixels (Fig. 5). 

Refined SDM 

To produce the refined model, we first eliminated all variables with a VIF > 4, which resulted in 
the following 6 least inter-correlated variables: mean diurnal temperature range (bio2), 
distance to water, habitat type, slope, soil, and vegetation cover. We thinned the 3,629-elk 
occurrence dataset to 1,169, 397, and 208 occurrence points for 100 m, 500 m, and 1 km 
subsets, respectively. As we increased spatial thinning distance, model performance declined 
for both partition methods (i.e., the full model outperformed the thinned models). The 
‘checkerboard2’ models yielded an AUCTRAIN range of 0.814–0.858, an AUCTEST range of 0.764–
0.845, and an AUCDIFF range of 0.033–0.050, indicating good model performance across this 
class of partition type (Table 3). On the other hand, the ‘user’ models performed poorly in 
terms of model overfitting. While the range of the ‘user’ AUCTRAIN (0.816–0.885) values indicates 
good model performance for each dataset, the ranges of AUCTEST (0.500–0.615) and AUCDIFF 
(0.242–0.333) values indicates a severe vulnerability to model overfitting, and renders these 
models uninformative.  

To evaluate the models using the independent telemetry dataset, we first thinned the data to 
the same resolution as the occurrence dataset used to construct the Maxent models, resulting 
in 7,580, 924, and 323 location data points for 100 m, 500 m, and 1 km resolutions, 
respectively. We identified the optimal binary classification threshold for each of the eight 
competing models to measure model performance (Table 4). The preliminary model performed 
well as indicated by AUCFULL (0.789), AUCBINARY (0.722), and TSS (0.445) values, and was able to 
correctly predict 73% of the data over the binary surface (Table 4). The ‘checkerboard2’ models 
performed moderate-to-well, as indicated by the range of AUCFULL (0.751–0.786), AUCBINARY 

(0.685–736), and TSS (0.371–0.472) values, and correctly predicted between 64–78% of the 
data. Despite the vulnerability to model overfitting, the ‘user’ models performed similarly to 
the ‘checkerboard2’ models when tested with the independent data. The ‘user’ models yielded 
ranges of AUCFULL (0.757–0.784), AUCBINARY (0.689–724), and TSS (0.379–0.447) values, which 
support moderate-to-good model performance, and was able to correctly predict between 65–
75% of the data over the binary surface. Overall, the top performing refined model was the 
‘checkerboard2’-500 m model according to the maximum TSS score (0.472), and its 
performance was supported by the AUCTRAIN (0.832) and AUCTEST (0.795) values. This model 
retained the desired qualities of a good model –low overfitting (AUCDIFF = 0.033) and high 
discriminatory ability (78% proportion correctly classified).  
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The contribution of refined covariates in order of permutation importance for our best-fit 
refined model was soil, bio2, vegetation cover, habitat type, distance to water, and slope 
(Supplementary Table 4). The importance of soil in the refined model contrasted with the 
preliminary model, which did not include this variable.  Otherwise, however, the models were 
similar.  As with the preliminary model, the RPO exhibited a positive relationship with bio2, 
vegetation cover, and habitat type, and the predictive values for the specific parameters 
showed similar response curves to the preliminary model (Supplementary Fig. 4). The predicted 
RPO increased positively with bio2 (Supplementary Fig. 4A), and was much greater in perennial 
grassland, followed by hardwood-conifer, montane riparian, and lacustrine habitat types 
(Supplementary Fig. 4B), and with increasing herb and shrub cover and decreasing tree cover 
(Supplementary Fig. 4C). Soil type, which was both the highest contributing variable and of 
greatest permutation importance, also had the greatest positive relationship with predicted 
RPO (38% of soil types had an RPO > 0.40), the highest of which was the Riverwash-Orland-Los 
Robles-Cortina soil type (RPO = 0.93) (Supplementary Fig. 4D). Distance to water (m) had a 
slightly negative relationship with predictive ability, and slope did not have an effect on 
predictive ability.  

Visual inspection of the predictive surface revealed several core areas of high RPO, which, as 
with the preliminary models, corresponded to the MUs (Fig. 6A/Supplementary Fig. 5). 
Corridors of higher RPO again appear to connect core suitable habitat across the study region, 
although to a lesser degree compared to the preliminary model. We produced a raw binary 
surface using the classification threshold 0.35 (Fig. 6B), and transformed the map to a binary 
grid surface and assigned HP and LP classifications (Fig. 6C). In total, 279 cells were classified as 
HP (14% of all cells). 

To visualize the difference between the preliminary and refined model surface predictions, we 
produced a map that identified binary distribution prediction changes across these two models 
(Fig. 7). Predicted presence described ~2,790 km2 (31%) of the preliminary model and ~2,250 
km2 (25%) of the refined model, representing a 6% reduction (~540 km2) in the fraction of the 
landscape in which elk were predicted to occur. Model predictions of elk presence differed the 
least in and around the three populations and the most in the intervening regions potentially 
connecting them. In both models, the majority of the study area was predicted to be absent of 
elk.  

Discussion 

Our goal was to investigate the use of a SDM approach to stratify the landscape for more 
efficient systematic sampling of a heterogeneously distributed species.  In particular, we sought 
to evaluate the approach with respect to use of opportunistic versus systematic sources of 
data, predictive accuracy, and gain in sampling efficiency. Given the purpose of models, their 
most important attribute was to accurately identify portions of the landscape least likely to 
contain elk.  Although we constructed models using two different data sets and procedures, 
models resulting from both efforts identified most (>69%) of the landscape as low probability, 
and for the most part, overlapped in these predictions. Because our study was part of a broader 
research effort (Bush et al. 2016), we were uniquely positioned to take advantage of a 
completely independent data set afforded by 78 telemetered elk to independently validate 
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each model’s predictive ability, a step recommended but rarely practiced for SDM validation 
(Greaves et al. 2006; West et al. 2016; Law et al. 2017; Rhoden et al. 2017; Wauchope-Drumm 
et al. 2020). Comparison of these models to over 45,000 telemetry locations demonstrated 
them to be reasonably accurate, and sufficient to increase the efficiency of a stratified random 
design 36% relative to a simple random sample of the landscape. However, the similarity of the 
surfaces despite incorporation of different variables also underscores the need for caution 
when interpreting these predictive models as causal models.  For example, soil was the most 
predictive variable in our refined model yet was absent from the preliminary model.  

Comparison of the predicted RPO surfaces between the preliminary and refined models 
revealed differences in spatial predictions. The refined model included more constraints (i.e., 
soil, distance to water, and slope) on the data compared to the preliminary model, and, as 
expected, its output indicated more restrictive RPO in geographic space when compared to the 
preliminary model (Royle et al. 2012; West et al. 2016). Even with this reduction in predicted 
RPO, our results did not yield a significant increase in model performance from the preliminary 
to refined outputs either in terms of RPO or sampling efficiency, likely a result of the large initial 
sample size (n = 1,207) and the ecologically narrow-range of tule elk, both factors known to 
generate better model performance compared to the respective alternatives (Tessarolo et al. 
2014). Because historical occurrence datasets are frequently accessible to wildlife management 
agencies (Virgili et al. 2017) this result is welcoming, as it indicates existing data can be readily 
applied towards reliable SDM production, assuming the existing dataset is sufficiently large for 
its specific geographic extent (Wisz et al. 2008; van Proosdij et al. 2015). 

While incorporation of systematic sampling and model refinement into the overall framework is 
important to improve spatial predictions (Quinn et al. 2018; Wauchope-Drumm et al. 2020), 
survey effort is often limited by time, funding, and personnel allocation (CDFW 2013). The 
ability to confidently generate reliable SDMs with pre-existing datasets, as demonstrated with 
our preliminary model, affords wildlife managers an additional tool that can be applied towards 
species management with less time and resource investment. Moreover, once a model is 
applied for sampling purposes, continued refinement based on resulting survey data, as in this 
study, can lead to improved accuracy and, therefore, efficiency (West et al. 2016; Law et al. 
2017; Rhoden et al. 2017).  

Understanding assumptions and possible vulnerabilities of our modeling process is important 
towards future applications of model-guided surveys and the model refinement processes. For 
our preliminary model, we relied heavily on historical occurrence localities, data most 
commonly possessed and utilized by producers of presence-only SDMs (Virgili et al. 2017). 
Although many of the reported localities were obtained through resource management 
agencies, the accuracy of some locations was questionable, and in some cases, particularly the 
hunter-harvest locations, were a best guess based on limited information provided. Although 
Maxent is somewhat robust to spatial error of location data (Baldwin 2009), use of these 
historical data resulted in uneven sampling, yielding clusters of occurrences in areas more easily 
or frequently surveyed, areas known to be of high elk use, or a combination of the two (e.g., 
Bower 1956).  
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The results of our refined model, in which we tested a range of thinned datasets, similarly 
supported minimal impact from spatial clustering of data. While focal sampling within range 
boundaries estimated a priori could result in inflated evaluation metrics (e.g., Westwood et al. 
2020), testing predictive ability with independent GPS collar data indicated good model 
performance, and visual assessment showed high agreeance between field detections and 
telemetry data for both the preliminary and refined models (Figs. 4, S5, S6). In comparison to 
the putative population ranges, only ~2% of the GPS collar locations (the “realized distribution”) 
occurred an average of 0.78 km outside the estimated boundaries, thus supporting our decision 
to survey only within these areas. By concentrating sampling efforts within these estimated 
range boundaries we were able to reduce the entire survey area by 85%. Nevertheless, elk may 
have been present in these intermediary predicted presence areas (Williams et al. 2002). To 
more fully understand interactions across populations, and because connectivity of fragmented 
populations is essential towards long term viability (Williams et al. 2004; Hilty et al. 2006), 
future surveys could incorporate deliberate sampling of potential distribution outside 
presumed range boundaries with little cost to survey efficiency (Elith et al. 2006; de Oliveira et 
al. 2019). 

Additional Benefits of SDMs  

In addition to their utility for guiding more efficient density and abundance surveys, SDMs also 
produce spatial hypotheses useful for testing and evaluating additional demographic processes 
including, for example, habitat affinities and population genetics (McCullough et al. 1996; Hilty 
et al. 2006; Buchalski et al. 2015). These factors, among others, are critical to better understand 
and effectively manage harvested species, especially those persisting in fragmented 
populations (Williams et al. 2004; Frankham et al. 2017; CDFW 2018).  

A model’s ability to produce measures of a species’ environmental associations is an integral 
component of SDM production (Franklin 2010), and allows for qualitative comparison against 
expert knowledge and known life-history traits of the focal species (Franklin 2013). For 
example, tule elk have consistently been associated with habitat types and vegetation cover 
that our predictor variables identified as important, including perennial grassland, riparian, 
lacustrine, and oak-dominant habitats (i.e., Bower 1956; Brandvold 1969; McCullough 1969; 
Ferrier and Roberts 1973; Smith 1973; Phillips 1976; O’Connor and Guitierrez 1986; McCullough 
et al. 1996; CDFW 2018), habitat types generally characterized as more “open,” all of which 
provide required nutrients and promotion of gregarious space use and group vigilance 
(McCullough 1969; Raedeke et al. 2002). Furthermore, integration of SDMs with other 
monitoring tools, such as noninvasive genetic sampling, can lend further insight into improving 
understanding of elk populations. Quantification of genetic variation can illuminate the genetic 
patterns underlying population dynamics, uncover barriers and linkages to population 
connectivity, and allow for inference of dispersal patterns and potential range expansion (Hilty 
et al. 2006; Hicks et al. 2007; Onorato et al. 2007; Sun et al. 2017; Frankham et al. 2017; Quinn 
et al. 2018).  

Management Implications 

Our study demonstrated that development and use of a SDM can significantly increase 
efficiency of sampling for elk by using it to stratify the study area to focus sampling in high-
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probability areas.  Moreover, while it is ideal to construct the most rigorous model possible—
and our study provides one possible set of guidelines for doing so—our findings also suggest 
that use of readily available information, even if not entirely verifiable, can substantially 
increase the efficiency of elk surveys.   
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Figure 1. Study area in the California Coast and Interior Coast mountain ranges encompassing four management units (MUs) from CDFW 

(2018) plus the entirety of Lake County. Estimated range boundaries (clockwise from left) for the Lake Pillsbury, East Park Reservoir, and 

Cache Creek populations are outlined in black and overlaid atop the MUs. Major water bodies are indicated by blue polygons. 
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Figure 2. Preliminary model predictive 

surfaces for tule elk in Colusa and Lake 

Counties, CA. Predictive surfaces are 

shown for the (A) relative probability of 

occurrence (RPO) (B) the raw binary 

surface (classification threshold value = 

0.15), and (C) its corresponding 

dichotomized 2 km2 gridded surface.  

Putative range boundaries are outlined in 

white. 
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Figure 3. Linear least-squares regression of elk detections per kilometer surveyed as a function of 5 

relative probability of occurrence (RPO) classes according to the preliminary Maxent model. Elk 

detections (n = 3,629) were gathered during field surveys from Jun–Aug 2017–19 in Colusa and Lake 

Counties, CA. The regression equation was  �̂� = 23.25x + 2.8, with mean square error = 10.8 

detections per km. 
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 Figure 4. Cumulative kernel densities of GPS collar points from 78 tule elk (39 male, 39 female) accumulated during January 2017–October 2019 

and elk detections (grey circles) gathered during field surveys from Jun–Aug 2017–19 in Colusa and Lake Counties, CA. Surfaces are shown for elk 
at (A) Lake Pillsbury, (B) East Park Reservoir, (C) Cache Creek, and within (D) the entire study area. Putative population range boundaries are 
outlined in white. The cells where elk were not detected at Cache Creek (n = 4) are outlined in white with black cross-hatch (C). 
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C 

A B 

D 

Figure 5. Elk detections recorded during the three field seasons overlaid upon the preliminary model raw binary surface. Surfaces are shown 
for (A) Lake Pillsbury, (B) East Park Reservoir, (C) Cache Creek within (D) the entire study area. Gold areas indicate areas of high probability of 
elk occurrence; purple areas indicate areas of low probability of elk occurrence. Putative range boundaries are outlined in white. Elk 
detections occurred in ≤500 m from areas of predicted presence. 
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A 

B 

C 

Figure 6. Refined model predictive 

surfaces for tule elk in Colusa and Lake 

Counties, CA. Predictive surfaces are 

shown for the (A) relative probability of 

occurrence (RPO), (B) the raw binary 

surface (classification threshold value = 

0.35), and (C) its corresponding 

dichotomized 2-km2 sampling grid 

surface. Putative range boundaries are 

outlined in white. 
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 Figure 7. Changes in binary distribution predictions between the preliminary and refined models. Surface depicts areas of: high probability in the 

refined model only (gold), low probability in both models (blue), high probability in both models (green), and high probability in the preliminary 

model only (purple). The refined model reduced the high probability area by ~540 km2 (6%). 
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Section I Tables 
 

Table 1. Presence type and total count for tule elk detection data for the preliminary Maxent model input. 

Presence Type Count 

Antler shed 1 

Bedding area 6 

Camera detection 3 

Carcass remains 3 

Direct observation 187 

Hair 1 

Hunter harvest 72 

Pellet groups 825 

Rub 2 

Scrape 1 

Tracks 106 

Total 1207 
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Table 2. Presence type and total count for tule elk detection data for the refined Maxent model input. 

Presence Type Count 

Antler shed 11 

Bedding area 242 

Camera detection 31 

Carcass remains 13 

Direct observation 277 

Failed GPS collar 3 

Hunter harvest 34 

Pellet groups 2605 

Rub 2 

Scrape 7 

Tracks 404 

Total 3629 
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Table 3. Average area under the receiver operating characteristic curve (AUC) values for different model parameterizations estimated from 

cross-validation (preliminary model, gray fill) and geographically structured k-fold cross-validation (refined model) of Maxent predictions for 

locations of tule elk in Colusa and Lake Counties, CA. Results are shown for the best-fit model from each dataset (Occurrence Dataset), with each 

model's corresponding partition type (Partition), number of occurrence points used as model input (No. Occ. Points), interface used to produce 

the model (Interface), feature class or feature class combination (FC), and regularization multiplier (RM). 

Occurrence 
Dataset 

Partition AUCTRAIN AUCTEST AUCDIFF 
No. Occ. 
Points 

Interface FC* RM 

Prelim Cross-validate 0.889 0.885 0.004 1,207 Maxent GUI LQ 1 

Full CheckerBoard2 0.885 0.845 0.040 3,629 ENMeval L 2.5 

100m CheckerBoard2 0.858 0.825 0.033 924 ENMeval LQP 0.5 

500m CheckerBoard2 0.832 0.795 0.037 323 ENMeval LQ 0.5 

1km CheckerBoard2 0.814 0.764 0.050 208 ENMeval LQ 1.5 

Full User 0.885 0.615 0.270 3,629 ENMeval LQP 0.5 

100m User 0.858 0.561 0.297 924 ENMeval LQ 0.5 

500m User 0.833 0.500 0.333 323 ENMeval LQP 0.5 

1km User 0.816 0.574 0.242 208 ENMeval LQ 1 

*Feature classes considered singly and in combination include linear (L), quadratic (Q), and product (P)
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Table 4. Measurements of model performance for Maxent models using full and thinned independent GPS collar data from 78 elk (39 male, 39 

female). Results are shown for the best-fit model from each dataset (Occurrence Datatset), with each model's corresponding partition type 

(Partition), and number of GPS points used as model input (No. GPS Points). Performance metrics include average area under the receiver 

operating characteristic curve (AUC) for the threshold independent logistic model (AUCFULL), the binary classification threshold (Threshold), the 

AUC for the threshold-dependent binary (un-gridded) model (AUCBINARY), true skill statistic (TSS) value, and percent correctly classified (PCC). 

Occurrence 
Dataset 

Partition No. GPS Points AUCFULL Threshold AUCBINARY TSS PCC 

Prelim Cross-validate 47,445 0.789 0.1506 0.722 0.445 73% 

Full CheckerBoard2 47,445 0.759 0.3008 0.704 0.407 64% 

100m CheckerBoard2 7,580 0.786 0.3229 0.721 0.443 73% 

500m CheckerBoard2 924 0.780 0.3577 0.736 0.472 78% 

1km CheckerBoard2 323 0.751 0.3292 0.685 0.371 65% 

Full User 47,445 0.782 0.2689 0.705 0.410 65% 

100m User 7,580 0.784 0.4178 0.716 0.433 73% 

500m User 924 0.780 0.4171 0.724 0.447 75% 

1km User 323 0.757 0.4099 0.689 0.379 74% 
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Section I Supplementary Figures 
 

Supplementary Fig. 1. Checkerboard2 (A) and user (B) partition methods to divide data for training and testing in the R program 

ENMeval (Muscarella et al. 2014). 
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A 

B 

C 

Supplementary Fig. 2. Preliminary model response curves for bio2 

(mean diurnal temperature range) (A), habitat type (B), and 

vegetation cover (C). Each graph shows how the predicted relative 

probability of elk occurrence changes as each environmental 

variable is varied while keeping all other variables at their average 

sample value. 
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Supplementary Figure 3. Preliminary model logistic predictive surface showing the relative probability of occurrence of tule elk in Colusa and 
Lake Counties, CA. Elk detections used to produce the model are shown in gray (n = 1,207). Warmer surface colors indicate areas predicted to 
have more suitable environmental conditions. Putative range boundaries are outlined in white. 
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Supplementary Figure 4. Refined model response curves for bio2 (mean diurnal temperature range) (A), habitat type (B), vegetation cover (C) and soil 

(only soil types with relative probability of occurrence values > 0.40 are shown) (D). Each graph shows how the predicted relative probability of elk 

occurrence changes as each environmental variable is varied while keeping all other variables at their average sample value. 
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Supplementary Figure 5. Refined model logistic predictive surface showing the relative probability of occurrence of tule elk in Colusa and Lake 
Counties, CA. Spatially thinned (500 m) elk detections used to produce the model (n = 323) are shown in gray. Warmer surface colors indicate 
areas predicted to have more suitable environmental conditions. Putative range boundaries are outlined in white. 
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Supplementary Fig. 6. Preliminary model logistic predictive surface showing the relative probability of occurrence of tule elk in Colusa and Lake 
Counties, CA. Elk detections used to produce the model (n = 1,207) are shown in gray; independent GPS collar location data (n = 47,445) from 78 
elk (39 male, 39 female) used to evaluate model performance are shown in orange. Warmer surface colors indicate areas predicted to have more 
suitable environmental conditions. Putative range boundaries are outlined in white. 
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Supplementary Fig. 7. Refined model logistic predictive surface showing the relative probability of occurrence of tule elk in Colusa and Lake 
Counties, CA. Spatially thinned (500 m) elk detections used to produce the model (n = 323) are shown in gray; spatially thinned (500 m) 
independent GPS collar location data (n = 924) from 78 elk (39 male, 39 female) used to evaluate model performance are shown in orange. 
Warmer surface colors indicate areas predicted to have more suitable environmental conditions. Putative range boundaries are outlined in 
white. 
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Section I Supplementary Tables 

Supplementary Table 1. Covariates used for Maxent modelling of suitable elk habitat in Colusa and Lake 

Counties, California, USA. 

Variable Variable Subcategories Notes Source 

Abiotic       

Soil   WSS 2013 

 Cibo-Ayar-Altamont    

 Contra Costa-Altamont    

 Dingman-Beaughton    

 Glenview-Bottlerock-Arrowhead    

 Goldridge    

 Hillgate-Corning    

 Maxwell-Leesville    

 Maymen-Etsel    

 

Millsholm-Los Osos-Dibble-
Balcom    

 

Millsholm-Maymen-Los Gatos-
Dibble    

 Parrish-Los Gatos-Hulls-Goulding    

 Parrish-Maymen-Los Gatos-Etsel    

 Phipps-Bally-Arbuckle    

 Positas-Balcom    

 

Riverwash-Orland-Los Robles-
Cortina    

 Sehorn-Millsholm-Lodo    

 Sehorn-Rock outcrop-Lodo    

 Sheetiron-Millich-Goulding    

 Sheetiron-Rubble land-Neuns    

 Skyhigh-Millsholm-Bressa    

 Sobrante-Hambright    

 Sodabay-Konocti-Benridge    

 Speaker-Sanhedrin-Kekawaka-Hopland   

 Stonyford-Maymen-Henneke    

 Tehama-Hillgate-Arbuckle    

 Wappo-Manzanita-Forbesville    

 Water-Dominant   

 

Wolfcreek-Still-Lupoyoma-
Kelsey    

 Yollabolly-Rock outcrop    

 

Yolo-Sycamore-Brentwood-
Artois    
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Yorkville-Yorktree-Witherell-
Squawrock-Shortyork    

 Zamora-Willows-Marvin-Capay    
Distance to 
water Continuous, meters 

Manually derived from USA Surface 
Water layer ESRI 2013 

Bioclimatic       

Worldclim   

Hijmans et al. 
2005 

 Bio1 Annual mean temperature  

 Bio2 Mean diurnal temperature range  

 Bio3 Isothermality  

 Bio4 Temperature of seasonality  

 Bio5 
Maximum temperature of warmest 
month  

 Bio6 
Maximum temperature of coldest 
month  

 Bio7 Temperature of annual range  

 Bio8 
Mean temperature of wettest 
quarter  

 Bio9 
Mean temperature of driest 
quarter  

 Bio10 
Mean temperature of warmest 
quarter  

 Bio11 
Mean temperature of coldest 
quarter  

 Bio12 Annual precipitation  

 Bio13 Precipitation of wettest month  

 Bio14 Precipitation of driest month  

 Bio15 Precipitation seasonality  

 Bio16 Precipitation of wettest quarter  

 Bio17 Precipitation of driest quarter  

 Bio18 Precipitation of warmest quarter  

 Bio19 Precipitation of coldest quarter  
Ecological       

Habitat type   CalFIRE 2015 

 Annual Grassland   

 Barren   

 Blue Oak-Valley Oak Dominant   

 Chamise-Redshank Chaparral   

 Coastal Oak Woodland   

 Coastal Scrub   

 Conifer Forest   
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 Cropland   

 Desert Riparian   

 Fresh Emergent Wetland   

 Hardwood   

 Hardwood-Conifer   

 Irrigated Agriculture   

 Klamath Conifer   

 Lacustrine   

 Mixed Chaparral   

 Montane Chaparral   

 Montane Riparian   

 Orchard   

 Pasture   

 Perennial Grassland   

 Rice   

 Riverine   

 Sagebrush   

 Urban   

 Valley Foothill Riparian   

 Wet Meadow   
Topographic       

Elevation Continuous, meters  

LANDFIRE 
2013a 

Slope Continuous, percent rise  

LANDFIRE 
2013a 

Aspect Continuous, degrees  

LANDFIRE 
2013a 

Vegetation       

Vegetation 
cover   

LANDFIRE 
2013b 

 Crop   

 Developed   

 Herb Cover <50%   

 Herb Cover >50%   

 Shrub Cover <50%   

 Shrub Cover >50%   

 Tree Cover < 50%   

 Tree Cover > 50%   

 Water   
Vegetation 
height   

LANDFIRE 
2013b 

 Agriculture - General   
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 Barren   

 Cultivated Crops   

 Developed - General   

 Developed - High Intensity   

 Developed - Low Intensity   

 Developed - Medium Intensity   

 Developed - Open Space   

 

Developed-Herbaceous Wetland 
Vegetation   

 Developed-Roads   

 

Developed-Upland Deciduous 
Forest   

 

Developed-Upland Evergreen 
Forest   

 Developed-Upland Herbaceous   

 Developed-Upland Mixed Forest   

 Developed-Upland Shrubland   

 

Developed-Woody Wetland 
Vegetation   

 Fallow   

 Forest Height > 50 meters   

 Forest Height 0 to 5 meters   

 Forest Height 10 to 25 meters   

 Forest Height 25 to 50 meters   

 Forest Height 5 to 10 meters   

 Herb Height > 1.0 meter   

 Herb Height >= 0.5m   

 Herb Height >0 and < 0.5m   

 Herb Height 0 to 0.5 meters   

 Herb Height 0.5 to 1.0 meters   

 Herbaceous Semi-dry   

 Herbaceous Semi-wet   

 Herbaceous Wetlands   

 NASS-Aquaculture   

 NASS-Bush fruit and berries   

 NASS-Close Grown Crop   

 NASS-Fallow/Idle Cropland   

 NASS-Orchard   

 NASS-Pasture and Hayland   

 NASS-Row Crop   

 

NASS-Row Crop-Close Grown 
Crop   
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 NASS-Vineyard   

 NASS-Wheat   

 Open Water   

 Pasture/Hay   

 Quarries-Strip Mines-Gravel Pits   

 Recently Disturbed Forest   

 Shrub Height > 3.0 meters   

 Shrub Height >= 0.5 and < 1.5m   

 Shrub Height >= 1.5m   

 Shrub Height >0 and < 0.5m   

 Shrub Height 0 to 0.5 meters   

 Shrub Height 0.5 to 1.0 meter   

 Shrub Height 1.0 to 3.0 meters   

 Small Grains   

 Snow/Ice   

 Sparse Vegetation Height   

 Sparse Vegetation Height   

 Tree Height > 0 and < 10m   

 Tree Height >= 10m   
  Urban-Recreational Grasses     
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Supplementary Table 2. Percent contribution and permutation importance of three variables to the 

preliminary model 

Variable 
Percent 

Contribution 
Permutation 
Importance 

Bio2 53.8 65.1 

Habitat type 25.4 15.2 

Vegetation cover 20.8 19.6 
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Supplementary Table 3. Field survey detections of tule elk classified by the preliminary model predictions in all 

populations (all), Cache Creek (CC), Lake Pillsbury (LPB), East Park Reservoir (EPR), and Bachelor Valley (BV) in 

Colusa and Lake Counties, CA, from 2017-2019. Occurrence locations are classified by low probability (LP) 

cells, high probability (HP) cells, total detections (Total), percent low probability (%LP), and percent high 

probability (%HP). 

 Location LP HP Total %LP %HP 

All 581 3048 3629 16% 84% 

Cache Creek 226 1853 2079 11% 89% 

Lake Pillsbury 265 782 1047 25% 75% 

East Park Reservoir 90 394 484 19% 81% 

Bachelor Valley 0 19 19 0% 100% 
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Supplementary Table 4. Percent contribution and permutation importance of six variables to the refined 

model 

Variable 
Percent 

Contributio
n 

Permutatio
n 

Importance 

Soil 64.8 61.1 

Habitat type 13.0 9.1 

Vegetation cover 12.0 10.0 

Bio2 8.1 17.8 

Distance to water 2.1 2.0 

Slope 0.0 0.0 
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II. Noninvasive spatial capture-recapture estimation of tule elk (Cervus canadensis nannodes) 
abundance in Northern California using fecal DNA  

Introduction 

Effective conservation and management of wildlife populations requires periodic estimation of 
density and abundance (Pollock 1991; Lancia et al. 2005). Aerial and ground-based minimum 
count data are often used to infer population sizes of big game species (Williams et al. 2002; 
California Department of Fish and Wildlife [CDFW] 2018). These traditional methods, however, 
typically yield underestimates of density and abundance with unknown precision and 
potentially variable relationships to true abundance; they can be affected by visually 
obstructive habitat and terrain, unknown detection probabilities, and lack of bounded statistical 
estimates (Caughley 1974; McCullough et al. 1994; Bleich et al. 2001; Williams et al. 2004; 
Stephens et al. 2015; Schoenecker and Lubow 2016).   

Alternatively, statistical methods, such as line-transect, distance-sampling, or capture-recapture 
(CR) methods enable point estimates in addition to confidence intervals that quantify the 
uncertainty associated with them (Pollock et al. 1990; Williams et al. 2002; Lancia et al. 2005). 
In recent years, noninvasive fecal DNA (fDNA)-based spatial capture-recapture (SCR) techniques 
have proven highly versatile for local and regional efforts to estimate and monitor abundance 
of wildlife populations for species that conform to SCR assumptions such as deer (Odocoileus 
spp.) in a variety of habitats (Brinkman et al. 2011; Goode et al. 2014; Lounsberry et al. 2015; 
Brazeal et al. 2017; Furnas et al. 2018, 2020). 

However, these methods have not been widely applied to more gregarious species such as elk 
(Cervus canadensis) that use the landscape more heterogeneously (Mackie 1970) and exhibit 
grouping behavior that changes seasonally (Murie 1951; Raedeke et al. 2002). Although SCR 
methods can account for heterogeneous landscape use, randomly sampling landscapes for 
which only a small fraction is occupied by target species may be unpractical and inefficient.  
Second, space use and grouping behavior of elk, which differ between the sexes, can affect 
assumptions of independence. Females especially tend to aggregate (Geist 2002), potentially 
introducing biases that can lead to overestimated precision and, in extreme cases, abundance 
(Bischof et al. 2020).  

We applied fDNA SCR methods to elk in northern California during summer months, after 

calving and before the rut, when elk were expected to exhibit relatively stable space use 

(McCullough 1969).  To enhance the efficiency of fDNA samples, we used a species distribution 

model (SDM) to stratify the landscape into high- and low-probability strata, which allowed us to 

sample each stratum randomly but with effort disproportionately expended in the high-

probability stratum (Batter et al. Ch. 1).  This procedure resulted in a ~35% increase in efficiency 

relative to a simple random design (Batter et al. Ch. 1).  Pellet surveys were conducted 

concurrently with but independently of GPS telemetry and aerial counts in 3 tule elk (C. c. 

nannodes) populations. We compared fDNA SCR estimates both for males (expected to 

conform better to assumptions of independence) and females (expected to violate 

assumptions) modeled separately and for combined-sex models and used telemetry data to 

explore the magnitude of spatial clustering of each sex. 
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Methods 

Study Area 

The study area encompassed ~9,000 km2 of the California Coast and Interior Coast mountain 
ranges, including four management units (MUs): the Cache Creek, Bear Valley, Lake Pillsbury 
(LPB), and East Park Reservoir (EPR) MUs (CDFW 2015; CDFW 2018) (Fig. 1). Based on historical 
records, range boundaries were defined for three populations corresponding to LPB, EPR, and 
the combined Cache Creek and Bear Valley MUs, hereafter referred to as Cache Creek (CC) 
(Batter et al. Ch. 1).  The region generally experiences hot, dry summers and mild, rainy winters, 
described as a Mediterranean climate (Kauffman 2003). Year-round temperatures range from 0 

oC in the winter to summer daytime temperatures exceeding 38 oC (Phillips 1976; CDFW 2018). 
Average annual precipitation is ~76 cm, a majority of which occurs from October through May 
(Ferrier and Roberts 1973; Bureau of Land Management [BLM] 1986). Perennial water sources 
include Cache Creek and Bear Creek, Lake Pillsbury and the Eel River, and East Park Reservoir 
and Stony Creek in the Cache Creek/Bear Valley, Lake Pillsbury, and East Park Reservoir MUs, 
respectively (Phillips 1976; CDFW 2018). This region is characterized by harsh, rugged terrain; 
rolling foothills and flats permeate jagged peaks and valleys. Elevation ranges from 30 m at its 
lowest point in the Sacramento Valley to 2,176 m at its highest point at Black Butte Mountain. 
Dominant vegetation communities include blue oak (Quercus douglasii) woodland, perennial 
grasslands, chamise (Adeonostoma fasciculatum) –redshank (A. sparsifolium) chaparral, blue 
oak-foothill pine (Pinus sabiniana) woodlands, mixed conifer and hardwood forests, annual 
grasslands, lacustrine, and agricultural pastures. Land ownership is a mix of public and privately 
held parcels, with cattle ranching and outdoor recreation (i.e. camping, hunting, hiking, 
horseback riding, etc.) as primary uses (Brandvold 1969; Booth et al. 1988; Burns 2004; CDFW 
2018). 

Field Methods  

We conducted pellet surveys during Jun–Aug of 2017–2019. Summer sampling was conducted 
to avoid changes in group dynamics during the calving and rutting seasons and to ensure a 
closed population. We sampled CC in 2017 and 2019, and LPB in 2018 and 2019 for replication. 
After the initial season sampling EPR (2018), which was severely limited by access, we opted 
not to repeat that survey for a second year.   

To select survey units, we stratified the landscape according to a SDM to ensure that we 
focused most pellet-sampling effort in portions of the landscape more likely to be used by elk 
but also sampled other portions of the landscape sufficiently to avoid biasing estimates (Batter 
et al. Ch. 1). For each of the three populations, we overlaid grids comprised of 2-km2 cells, 
which we expected to approximate average home range radius of tule elk (Efford and Fewster 
2013; Brazeal and Sacks 2018). Cells were dichotomized into high-probability (HP) and low-
probability (LP) based on the SDM (Batter et al. Ch. 1). We assigned each grid cell a random cell 
identification number and used a random number generator to determine cells eligible for 
sampling. When a cell was selected for sampling, all direct-bordering cells were then 
disqualified for sampling unless a border cell did not have the same prediction of occurrence as 
the cell sampled, or the bordering cell was diagonal from the sampled cell. With some 
exceptions due to constraints associated with land ownership and access, sampled grid cells 
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were ≥2 km apart. We ultimately selected 21% of the high-probability cells and 15% of the low-
probability cells to sample within the three estimated range boundaries (21% HP, 16% LP at 
Cache Creek; 25% HP, 12% LP at Lake Pillsbury; 16% HP, 18% LP at East Park Reservoir) (Batter 
et al. Ch. 1). 

We surveyed each cell using 6-km triangle transects (Helle et al. 2016) when practical and 4.5-
km out-over-back transects otherwise. For triangle transects, we nested an equilateral triangle 
within the 2-km grid cell, which began and ended at the same point. For out-over-back 
transects, we assigned starting locations randomly on the grid cell boundary from which the 
starting direction was typically dictated by land ownership/access. Transects extended 2 km out 
to the opposite boundary, 500 m over along that boundary, and 2 km back to the beginning 
boundary parallel to the first segment. Orientation of both transect methods was determined 
by topography, landownership, parking/access points, potential for elk use, safety and 
feasibility, or a combination of these factors. 

We applied a flexible sampling approach along the transect allowing the surveyor to deviate 
≤150 m from the transect line on either side. This approach was used to maximize efficiency to 
collect fecal pellets (e.g., if an obvious bedding area was observed adjacent to the transect, or if 
the surveyor was given a choice between suitable and unsuitable/inaccessible vegetation, 
terrain, etc.). Using a hand-held GPS device we recorded locations of each pellet group sampled 
and saved our tracks to measure effort. We collected 5–8 fecal pellets from each relatively 
fresh pellet group we encountered and placed them in 50 mL specimen jars. On the same day 
as collection, we filled specimen jars with 95–100% ethanol for preservation, and stored them 
at room temperature for 1–4 months until DNA extraction. We visited each transect once, with 
spatial re-detections of individuals acting as replicates during sampling occasions (Efford 2011; 
Sollmann et al. 2012).  

Telemetry  

To explore aggregation of female and male elk, we used telemetry data and aerial survey 
counts collected as part of a broader study (Bush et al. 2020; Bush in prep.).  Briefly, we 
collected GPS telemetry locations from 66 elk, including 34 F and 32 M, which were monitored 
simultaneous with the surveys using only locations from the same 3-month periods pellet 
surveys were conducted.  Elk were captured December 2016–October 2019 using ground-based 
free-range darting with a combination of tiletamine/zolazepam (1,000 mg) and xylazine (400 
mg) and air-based net-gunning/manual restraint of adult male and female elk. All capture 
activities were performed by CDFW personnel and followed guidance and approval from the 
CDFW Wildlife Investigations Laboratory (CDFW 2018b). Elk were fixed with GPS Collars (Model: 
LifeCycle 800 GlobalStar, Lotek Wireless, Newmarket, Ontario, Canada) programmed to collect 
latitude and longitude of the elk’s location every 13 hours. 

Genetic Analyses 

We completed all laboratory analyses at the Mammalian Ecology and Conservation Unit of the 
University of California, Davis Veterinary Genetics Laboratory. We evaporated ethanol from 1 to 
2 pellets at 21oC overnight; we then agitated the outside of the pellets with ≥2 mL of buffer ATL 
(Qiagen, Valencia, CA, USA) for 1 hour to remove epithelial cells from the outer surface of the 
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pellet(s) into the buffer. We extracted DNA from the cells in the buffer using the Qiagen Blood 
and Tissue kit according to the manufacturer’s protocol, except we eluted DNA in 50 μL of 
buffer AE (Qiagen) to acquire sufficiently concentrated DNA samples. We genotyped the DNA 
samples using a multiplex assay developed specifically for tule elk to address low polymorphism 
in previous elk markers (Sacks et al. 2016). We included 19 microsatellite markers: TE179, TE85, 
TE132, TE84, TE185, TE45, TE182, TE68, TE83, T501, TE169, TE105, TE88 (Sacks et al. 2016), T26, 
T193, T501, T172, T108 (Jones et al. 2002), and a sex-typing marker from the Y chromosome 
(SRY; Wilson and White 1998). We used an ABI 3730 (Applied Biosystems, Grand Island, NY, 
USA) and internal size standards (500-LIZ; Applied Biosystems) for electrophoresis, with alleles 
scored manually using electropherograms visualized in Program STRand (version 2.4.89; Toonan 
and Hughes 2001). We attempted to genotype each DNA sample in two independent 
Polymerase Chain Reaction (PCR) replicates. All PCR sets were conducted with two negative 
PCR controls to confirm that samples were not contaminated.  

Sample Genotypes and Individual Identification 

We constructed sample genotypes from each pair of replicate genotypes. To maximize accuracy 
and resolution, we excluded sample genotypes with <19 loci. To assign individuals based on the 
sample genotypes, we needed to allow for some number of allele mismatches due to 
genotyping error, while minimizing the risk of erroneously assigning genotypes from two closely 
related but distinct individuals (i.e. siblings, parents-offspring, etc.) to the same individual. We 
used the R package allelematch (v. 2.5, http://ecologics.ucalgary.ca/lab/software/), which uses 
a dissimilarity matrix from pairwise comparisons among multilocus genotypes to identify 
clusters of genotypes identified as unique individuals (Galpern et al. 2012). Using allelematch, 
we determined that the optimal threshold for number of allele mismatches allowed between 
sample genotypes considered the same individual was ≤2. For pairwise genotypes with exactly 
2 allelic mismatches, we considered the number of samples sharing the genotype, whether 
mismatching loci were heterozygous, and the quality of the genotypes based on peak heights in 
the electropherogram. After assigning individuals, we derived consensus genotypes for each 
individual across all such sample genotypes.  

Using the consensus genotypes for each individual, we estimated genetic summary statistics for 
both the total study area (i.e., elk across all three populations) and separately for each 
population in the R package diveRsity (Keenan et al. 2013). We tested for departures from 
Hardy-Weinberg equilibrium (HWE) at each locus in each population and estimated the 
probability of any two unique genotypes matching using GENALEX 6.5 (Peakall and Smouse 
2012). We estimated both the probability of identity (PID; the probability of two randomly 
selected individuals sharing the same genotype) and the probability of identity of siblings (PSIB; 
the probability that two siblings share the same genotype) (Waits et al. 2001). We calculated 
sex ratio (% male: % female) and 95% confidence limits directly from the sample genotypes for 
each population (Lounsberry et al. 2015). 

Spatial Capture-Recapture Modeling 

http://ecologics.ucalgary.ca/lab/software/
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We estimated elk density using the R package secr (v. 4.2; Efford 2004, 2020) which applies 
maximum likelihood estimation to SCR analyses (Efford et al. 2009a). SCR models directly 
depend on adequate number of unique individuals captured and recaptured at multiple spatial 
locations to derive density estimates (Efford and Boulanger 2019). The approach combines a 
“state model”, which describes the density (D̂) of animal activity centers, and an “observation 
model”, which describes the probability of detection relative to the distance from the activity 
center (Efford 2004).  The observation model takes a functional form, such as half-normal or 
negative exponential, that describes probability of detection in relation to distance from the 
activity center according to two parameters: probability of detection of an individual at its 
activity center (g0) and the individual’s scale of movement (σ), which is proportional to the 
home range radius (Efford 2020). Similar to conventional CR, SCR assumes a closed population, 
however, in contrast to traditional CR, SCR is associated with an explicit spatial area and 
accounts for spatial heterogeneity of individual animals and detectors, which gives rise to 
variation in detection probability (Borchers and Efford 2008; Royle et al. 2014).  

An additional advantage of SCR models is to allow use of covariates in both the “state” and 
“observation” models: the “state model” can incorporate covariates that can be used to predict 
explicitly how density is distributed across the landscape in response to environmental factors, 
such as vegetation communities; the “observation model” can incorporate covariates, such as 
sex, to allow for distinct home range sizes of males and females, or, using hybrid mixture 
models (hcov), latent variables, such as when unobserved demographic classes exhibit different 
space use (Williams et al. 2002; Efford and Fewster 2013). As secr models are computationally 
intensive, we used a step-wise approach (Brazeal et al. 2017; Loosen et al. 2018). For each 
population, we first identified the optimal detection function (half-normal vs. negative 
exponential) to use for the entirety of the modeling process (step 1). We then tested for an 
effect of sex using both the hybrid mixture model and the null model (step 2). Lastly, we applied 
the best observation model as a base to fit state models with both single and multiple variables 
(step 3; Supplementary Table 1). Because we sampled the same populations during the same 
seasons across the same space, we expected neither the probability of detection nor the scale 
of movement to vary temporally or spatially and therefore restricted parameters in the 
detection function to sex. For the null detection model, we assumed a homogeneous 
observation model (g0~1 σ~1) for each population across sample years; we similarly assumed a 
homogeneous observation model for the hcov detection model, except we included the pmix 
parameter as a constant effect (g0~h2 σ~h2).  

Once we settled on the optimal observation model (detection function) for each population, we 
modeled density relative to spatial heterogeneity. We created 7 two-year (Cache Creek and 
Lake Pillsbury) and a one-year (East Park Reservoir) state models that differed in sources of 
variation affecting density. We modeled spatial heterogeneity using environmental covariates 
considered important predictor variables for tule elk (Batter et al. Ch. 1): average daily 
temperature change (“bio2” in the WorldClim dataset; Hijmans et al. 2005), habitat quality 
(Supplementary Table 2; CalFIRE 2015), and soil taxonomy (Supplementary Table 3; Web Soil 
Survey 2017). For habitat quality, we grouped habitat into “prime”, “moderate”, and “poor” 
habitat classes based on predictive values from our habitat suitability model (Batter et al. Ch. 
1), while soil was classified by taxonomic subgroup.  
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Unique individuals identified via genetic analyses were used to construct capture histories for 
density modeling. We first discretized sample transects at 75-m intervals to act as proximity 
detectors in ArcGIS (v. 10.7.1) (ESRI 2019). Proximity detectors allow an individual or multiple 
individuals to only be detected a single time at a single detector, but the individual(s) may be 
detected at multiple detectors during one sampling occasion (i.e. DNA hair snares, fecal 
collection; Efford et al. 2009b; Borchers 2012; Sollmann et al. 2012). We therefore snapped 
pellet samples to the nearest detector, then thinned data so that individuals were only 
detected once at a given proximity detector (≤75 m). Detections of the same individual at 
different detectors (>75 m) serve as recaptures, which can occur within the same sampling 
occasion (Efford et al. 2009b; Borchers 2012; Sollmann et al. 2012; Efford 2020). Thus, 
proximity detectors enable density estimates from a single field sampling occasion within a 
buffered extent (Efford et al. 2009a, b; Royle et al. 2014). The buffered extent of the state space 
has no effect on density estimates so long as the mask is sufficiently large to include the activity 
centers of all animals potentially exposed to sampling (Borchers and Efford 2008; Royle and 
Young 2008). We specified a buffer width of 4 times the initial σ for each population (4σCC = 
4.75 km, 4σLPB = 2.95 km, 4σEPR = 5.02 km) (Sollmann et al. 2012; Efford 2020). Each model’s 
density estimates reached a plateau well before its respective buffer width, suggesting buffer 
width was sufficiently large enough to include all potential animals with activity centers in the 
sample area for each population under consideration (Efford 2020). We evaluated support for 
competing models by comparing Akaike’s Information Criterion (AIC) (Burnham and Anderson 
2002).  

We applied the derived function in secr to obtain density estimates for each population and for 
each of its sample years. This function also provided 95% confidence intervals and estimates of 
relative standard error of density (RSE(D̂)) for each density estimate. We projected abundance 
(N̂) estimates according to the best-supported model for each population across the 
corresponding range boundary for each population using the predictDsurface function. As a 
heuristic check we calculated the proportion of female and male pellet samples to 
independently validate the pmix parameter for each population.  Assuming male and female elk 
defecate at comparable rates and deposit a similar amount of pellet groups in the environment, 
and any observation or detection biases being equal, the ratio of male pellets sampled relative 
to female pellets provides an unbiased estimate of sex ratio (Lounsberry et al. 2015). 

Home Range Size and Independence of Activity Centers 

We used the R package adehabitatHR (Calenge 2006) to estimate the 95% kernel utilization 

distribution (KUD) for each individual during the sample seasons in which they were monitored.  

We averaged these KUDs across the two seasons of monitoring for Cache Creek and Lake 

Pillsbury elk. We also examined spatial clustering of home ranges and activity centers 

(centroids).  The SCR approach assumes a Poisson point observation process for animal activity 

centers, implying that home ranges are independent and randomly distributed over the 

landscape. In practice, these assumptions are often unrealistic and violated, particularly in 

more social species, but estimates are relatively robust except when violations are extreme 

(Bischof et al. 2018). In the most extreme cases of correlated space use (e.g., all individuals 
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share a single activity center), the primary effect is to overestimate precision.  To explore the 

magnitude of group association for males and females, we used GPS collar locations collected 

during our fecal sampling seasons (Jun–Aug in 2017 and 2019 at Cache Creek, in 2018 and 2019 

at Lake Pillsbury, and 2018 at East Park Reservoir) from 66 elk (32 male, 34 female). To estimate 

each elk’s activity center we used the mean center spatial statistics tool, then quantified both 

observed and expected (if randomly distributed and, therefore, independent of one another) 

nearest-neighbor distances among activity centers using the average nearest neighbor spatial 

statistics tool in ArcGIS (v. 10.7.1) (ESRI 2019).  We then tested the null hypothesis for each sex 

that the slope of a regression line describing observed nearest-neighbor distances versus 

expected nearest-neighbor distances was equivalent to 1 (Zar 1999). 

Results 

Genotyping and Individual Identification 

We collected a total of 1,616 pellet groups across three field seasons (Table 1). After we 
eliminated samples with <19 out of 20 loci amplified, 1,002 samples remained for analyses. We 
identified 425 unique individual elk across the study region (265 at Cache Creek, 128 at Lake 
Pillsbury, and 32 at East Park Reservoir) from the 1,002 successfully genotyped samples (Table 
1).   

Based on the 425 individual genotypes, microsatellite loci exhibited an average of 3.3 alleles 
(range: 2–7), HO averaged (± SD) 0.31 ± 0.10, and HE averaged 0.39 ± 0.12 (Table 2).  When 
adjusted for multiple comparisons, no loci were significantly out of HWE in >1 population 
(Supplementary Tables 4-6). Therefore, deviations from HWE were likely due to population 
substructure rather than allelic dropout or null alleles (see also Batter et al. Ch. 3).  All loci were 
retained in analyses. The cumulative polymorphism of these markers was sufficient to achieve 
PID of 3.6 x 10-8 and PSIB of 2.5 x 10-4 in the pooled dataset (Table 2) and ranged from 4.3 x 10-7 

to 2.2 x 10-6 (PID) and 6.3 x 10-4 to 1.7 x 10-3 (PSIB) among the three population data subsets 
(Supplementary Tables 4–6). 

Spatial Capture-Recapture Modeling 

After eliminating 130 sample genotypes that were assigned to the same individual as other 
samples at the same detector, we retained 872 genotyped samples for SCR analysis (Table 1). 
The exponential detection function was at least as well or better supported than the half 
normal function for all 3 populations in both combined- and single-sex models (Table 3; 
Supplementary Table 4). Therefore, we adopted the exponential function for all subsequent 
observation models.  

Among the combined-sex models, the spatially heterogeneous hybrid mixture models were 
similarly or better supported than the null model in all populations (Table 3) and, therefore, 
adopted for modeling habitat covariates. The most highly supported models differed across 
populations: the Cache Creek top model included bio2, habitat quality, and soil (Fig. 2A); the 
Lake Pillsbury top model included two variables habitat quality and soil (Fig. 2B); and East Park 
Reservoir’s two top models received similar support, so we model-averaged these: a single-
variable model, habitat quality, and a two-variable model, bio2 and habitat quality (Fig.2C; 
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Table 3). The null model was either the least well-supported or second least well-supported 
model in all three populations. Among the single-sex models, the null model was generally less 
well-supported than models including covariates (Supplementary Table 7).  Top single-sex 
models were very similar to those of the combined-sex models for both sexes.   

Density and Abundance Estimates 

Density estimates were similar between combined-sex models with and without (null) 
covariates and single-sex models, although confidence intervals were wider for the latter two 
categories (Fig. 3; Table 4; Supplementary Table 8).  Thus, estimates of density were not 
sensitive to the particular model. Overall, the Lake Pillsbury population had higher estimated 
density than both Cache Creek and East Park Reservoir populations. Due to its larger spatial 
extent, however, the Cache Creek population had the highest estimated abundance.  Based on 
the top combined-sex models, for example, Cache Creek numbers were estimated at N̂ = 325 
(95% CI = 261–395) in 2017 and N̂ = 318 (95% CI = 261–395) in 2019), followed by the Lake 
Pillsbury (N̂ = 265 [95% CI = 208-340] in 2018 and N̂ = 284 [95% CI = 227–359] in 2019), and East 
Park Reservoir (N̂ = 62 [95% CI = 34–110] in 2018) populations (Table 4).  

Sex Composition 

Based on the two better-sampled populations, the proportional composition of males in the 
pellet groups was similar to those estimated from the hybrid mixture models, both of which 
were higher than male composition estimated from the single-sex models.  In particular, at 
Cache Creek, 47% (95% CI: 43–51%) of pellet groups were male, compared to 43% (38–47%) 
males based on pmix of the combined-sex model, and 34.7% (28–39%) males based on the two 
single sex models.  Similarly, at Lake Pillsbury, 50% (44–56%) of pellet groups were male, 
compared to 49% (41–56%) males based on pmix of the combined-sex model, and 36.7% (30–
41%) males based on the two single sex models. These patterns suggest the presence of bias in 
at least one of the single sex models that was potentially compensated for by the use of both 
sexes in the combined sex model. 

Home Range Size and Clustering of Activity Centers 

Home range sizes (95% KUDs) varied across populations for both sexes during sample seasons, 

as illustrated at Cache Creek (Fig. 4A, B) and Lake Pillsbury (Fig. 5A, B). Females averaged 40 

km2, 5 km2, and 22 km2, while males averaged 71 km2, 75 km2, and 9 km2, at Cache Creek, Lake 

Pillsbury, and East Park Reservoir, respectively. Activity centers and 95% KUDs were much more 

clustered for females compared to males within each population and across sample seasons. 

The slope of the regression line of observed nearest neighbor distances on expected nearest 

neighbor distances for females (β = 0.475, SE = 0.058, P < 0.001) but not males (β = 0.932, SE = 

0.235, P > 0.10) was significantly lower than 1, as would be expected if they were distributed 

according to a Poisson distribution (Table 5). 

Discussion 

We undertook this study to address the need for a method of estimating the abundance of elk 
in a heterogeneous landscape. Because of its success in other ungulates, we chose to apply a 
fecal DNA-based SCR approach. However, elk populations come with the added challenge of a 
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group-living social system and, as a consequence, both more heterogeneous distribution on the 
landscape and the potential for highly correlated space use among individuals (McCullough 
1969; Mackie 1970; Boyce et al. 2003; Proffitt et al. 2015). These qualities pose challenges both 
in terms of efficiency, in that strictly random or systematic sampling approaches would result in 
considerable time wasted searching in locations where no elk are present, and a lack of 
independence among elk activity centers, which violate basic model assumptions.  

Our use of a species-distribution model to stratify the study area, allowing us to place 
more effort in locations likely to have more elk, was largely successful in allowing us to collect 
sufficient numbers of samples to obtain acceptably precise estimates in two of the three 
populations surveyed. In Cache Creek and Lake Pillsbury populations, our RSE estimates for the 
hybrid mixture models (10–14%) and single-sex models (14–21%) compared well with those 
generated for most other ungulates using an SCR approach, including deer (20–28%, Brazeal et 
al. 2017), giant eland (Taurotragus derbianus) (25–36%, Jůnek et al. 2015), as well as a study 
that used a captive population of tule elk of known size (12–29%, Brazeal and Sacks 2018). The 
precision of our estimates at East Park Reservoir, on the other hand, was poor, as expected 
from our small sample size. Our inadequate sampling of this population was due to a lack of 
access to private land. In the future, either more access to private lands needs to be secured or 
alternative approaches to abundance estimation, such as aerial line-transect approaches, will 
be needed to provide reliable abundance estimates for this population. 

Although our estimates were sufficiently precise as measured by model variances, for 
estimates to be accurate, they and the associated estimates of precision must also have low 
bias.  Our concern over the application of SCR to elk was based on expected violations to basic 
assumptions, independence of individual movements, in particular, that could potentially bias 
parameter and especially precision estimates (Bischof et al. 2020).  To minimize violations in the 
assumption of independence, we sampled during a time of year when group sizes tended to be 
smaller and social interactions more fluid (McCullough 1969).  Nevertheless, using the 
telemetry data, we found relatively strong clustering among females.  This concern was 
greatest in the Lake Pillsbury population, where females were clustered in a single small 
location, effectively sharing a single activity center.   Within the Cache Creek estimated range, 
we observed at least 4 distinct cow groups, each of which had highly correlated activity centers.  
Bischof et al. (2020) found that SCR models were relatively robust to clustered activity centers 
when there were multiple aggregations, such as at Cache Creek in our study, but potentially 
more severely biased when many individuals essentially shared a single activity center, which 
characterizes the Lake Pillsbury cow group.  

Because of concerns over clustering, an auxiliary study was conducted in October 2019 
(soon after our study of the same year) to estimate abundance of the Lake Pillsbury population 
using an alternative sampling and analysis approach (Bush in prep.; Sacks et al. 2020). Pellets 
were sampled late in the rut during a one-day intensive search focused on the Basin where the 
cow group was centered, and abundance was estimated using Capwire (Miller et al. 2005), 
which does not consider spatial distribution. The auxiliary study produced an estimate of 
female abundance (159, 95% CI: 106‒189) that agreed with that of our combined-sex SCR 
model (147 females, 95% CI: 108‒187), but which was considerably lower than our female-only 
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SCR model (283, 95%CI: 189‒397). Thus, it appears that under the most extreme level of spatial 
clustering, SCR estimates can be highly biased.  However, males did not exhibit significant 
clustering of activity centers, suggesting no reason to expect SCR estimates to be biased. 
Correspondingly, the inclusion of males in the modeling process was apparently sufficient to 
counter the effect of female clustering at Lake Pillsbury.  In the other population, where 
females occurred in multiple cow groups, we found little difference between the estimates 
from single-sex models and combined-sex models, except that the latter were more precise. 
Altogether, these findings suggest that the SCR method is robust to the level of gregariousness 
we observed in female elk during summer in situations where multiple distinct cow groups 
occur or even in a case of extreme female clustering when males are included in the modeling 
(e.g., Fig. 5A,B).   

Indeed, the general agreement among our different approaches to modeling elk density 
(i.e., combined sex, with and without covariates, single-sex) bodes well for the accuracy of 
parameter estimates, despite violations in model assumptions by the female component of the 
populations. Previous SCR estimation of density in captive ungulate populations of known size 
(including tule elk) also have proven to be relatively unbiased (Jůnek et al. 2015; Brazeal and 
Sacks 2018). A more likely issue in need of further investigation is the potential for 
overestimating precision which can lead to false inference (Bischof et al. 2020).  Incorporating 
simulations specific to the study system is one possible solution to this problem (Kristensen and 
Kovach 2018; Royle et al. 2014). In our case, simulations of known numbers of aggregating 
individuals could help to improve understanding of SCR accuracy and precision for social species 
in general (López-Bao et al. 2018; Bischof et al. 2020; McFarlane et al. 2020).  Beyond 
simulations, future research opportunities exist to develop models that address group 
association either within an SCR framework or those used in other abundance estimation 
methods (e.g., Hickey and Sollmann 2018). Accounting for group association within models is 
desirable not only to address problems related to biases, but to also allow for other useful 
measures including strength of cohesion, group size, and even group membership as a latent 
variable (Bischof et al. 2020). 

Beyond estimates—habitat modeling and other added benefits.  An added benefit of SCR 
methods is the inclusion of landscape covariates to determine factors associated with local 
density of small, isolated tule elk populations. Elk density was highest in areas of fertile, loam-
dominant soil types, prime habitat classification (i.e. perennial grassland; Supplementary Table 
2), and within an average daily temperature-change range of 1.62-1.70° C. These variables have 
been shown to be important predictors in tule elk habitat suitability both in past field 
observations as well as previous research (Van Dyke 1902; Grinnell 1933; Brandvold 1969; 
McCullough 1969; Ferrier and Roberts 1973; Phillips 1976; Booth et al. 1988; McCullough et al. 
1994). These results also align with variables that most influenced the predicted relative 
probability of occurrence (RPO) of tule elk in a companion study to guide field sampling efforts 
(Batter et al. Ch. 1). Our model predicted elk presence to be positively associated with an 
average daily temperature-change range between 1.64─1.79° C, prime habitat types (RPO > 
0.10; including perennial grassland, hardwood montane, and blue oak-valley oak woodland, 
among others), and loam-dominant, highly fertile soils.  
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It is important to note that our habitat model predicts areas of suitable conditions across the 
landscape relative to conditions of sites where elk were observed, and these predictions are 
unassociated with projections of density or abundance. However, visual comparison of areas of 
agreement (higher RPO and relatively greater density) across surfaces can lend insight into the 
utility of each method for describing elk spatial assortment. Our results here indicate areas of 
relatively greater surface density extrapolated from our secr predictions generally paralleled 
areas of higher RPO predictions at Cache Creek and Lake Pillsbury (Supplementary Figs. 1-2), 
while East Park Reservoir predictions were less complimentary (again, likely influenced by small 
sample size and lower precision of secr estimates; Supplementary Fig. 3). Furthermore, as we 
expected, predicted surface density across populations was spatially heterogeneous. In 
contrast, fDNA-SCR studies performed on California mule deer (O.h. californicus) and 
Columbian blacktail deer (O.h. columbianus) were projected to be distributed more 
homogeneously across the landscape (D̂ = 4.0─6.0 deer/km2) (Brazeal et al. 2017).  

In addition to its value in estimating density, abundance, and associated landscape covariates, 
noninvasive fecal pellet sampling provides genetic identification of individuals which has 
applied conservation and management value, and can offer insight into the genetic patterns 
underlying population dynamics (Buchalski et al. 2015; Sun et al. 2017). For example, with these 
genetic data, wildlife managers can quantify levels of genetic diversity and differentiation 
within and among populations, and reveal population structure allowing for inference of 
landscape connectivity, patterns of dispersal, and possible range expansion (Hicks et al. 2007; 
Onorato et al. 2007). Evaluation of genetic diversity as well as gene flow and relatedness of elk 
populations is not only desirable but essential to maintain long-term population viability for 
those that exist in small, isolated populations occupying patchy habitat (McCullough et al. 1996; 
Buchalski et al. 2015). These features describe most, if not all, tule elk populations and, given 
their life history and past genetic bottlenecks, only intensifies the need for periodic genetic 
monitoring of tule elk (Williams et al. 2004; CDFW 2018). 

Management Implications 

Previous studies have successfully applied noninvasive fecal DNA-based SCR to more uniformly 

distributed, and less gregarious species, such as mule and black-tailed deer (Brazeal et al. 2017; 

Furnas et al. 2020). This study demonstrated the applicability of SCR to a highly social species in 

which individuals use the landscape less independently of one another and more 

heterogeneously, and represents a step forward in CDFW’s goals for more robust statistical 

population monitoring for elk (CDFW 2018). A fDNA-SCR framework can provide improved 

estimates of elk density and abundance in comparison to minimum count indices facilitating 

more informed harvest quotas and information fundamental to conservation and restoration 

actions. In addition, the utility of fDNA sampling can provide data on additional population 

parameters important for management of ungulates, such as sex ratio (Brazeal et al. 2017; 

Furnas et al. 2018), population genetics (e.g., genetic diversity, population structure) (Buchalski 

et al. 2015; Sun et al. 2017), diet (e.g. DNA metabarcoding) (Kartzinel et al. 2015), as well as 

spatial and temporal distribution (Azad et al. 2019; Furnas et al. 2020). 
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Fig. 2. Study area in the California Coast and Interior Coast mountain ranges encompassing four management 

units (MUs) from CDFW (2018) plus the entirety of Lake County. Estimated range boundaries (clockwise from 

left) for the Lake Pillsbury, East Park Reservoir, and Cache Creek populations are outlined in black and overlaid 

atop the MUs. Major water bodies are indicated by blue polygons. 

Section II Figures
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Fig. 2. Density (D̂) surfaces (30 m resolution) based on the best-fit 
heterogeneous spatial capture-recapture model with covariates 
describing elk/km2 across the Cache Creek (A), Lake Pillsbury (B), and East 
Park Reservoir (C) estimated range boundaries in Colusa and Lake 
Counties, CA, USA, during Jun–Aug 2017 and 2019 (CC), 2018 and 2019 
(LPB), and 2018 (EPR). Sampled transects are represented by a black 
dashed line laid over a gray bar. Genotyped fDNA (NCC = 673, NLPB = 280, 
NEPR = 49) for male and female elk are indicated by green triangles (Δ) 
within each population. Lake Pillsbury and East Park Reservoir water 
bodies are represented by a light blue polygon in B and C, respectively. 
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Fig. 3.  Comparison of spatially explicit capture-recapture (SCR) density estimates (+/- 95% CI) based on 1,002 

fecal DNA genotypes for female and male tule elk derived from combined-sex top models (CS), combined sex 

null models (NMCS), and single-sex best models (SS) for three populations in Lake and Colusa Counties, CA, 

2017–2019: Cache Creek (CC), Lake Pillsbury (LPB), and East Park Reservoir (EPR), averaged between both 

years’ estimates (CC, LPB).  EPR was only sampled in 2018. 
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Fig. 4. 95% Kernel Utilization Density (KUD) and activity centers (AC) and of 22 female (A) and 23 male (B) tule elk at Cache Creek, Colusa 

and Lake Counties, CA. ACs are displayed for each sample season while 95% KUDs are averaged across sample seasons (Jun–Aug , 2017 

and 2019). 
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Fig. 5. 95% Kernel Utilization Density (KUD) and activity centers (AC) and of X female (A) and 5 male (B) tule elk at Lake Pillsbury, Lake 

County, CA. ACs are displayed for each sample season while 95% KUDs are averaged across sample seasons (Jun–Aug , 2018 and 2019). 

Lake Pillsbury is indicated by a blue polygon. 
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Section II Tables 

Table 1. Numbers of elk pellet samples collected, samples successfully genotyped at ≥ 19 loci, capture history, 

individuals identified, individual males, individual females, and total recaptures used in spatially explicit 

capture-recapture (SCR) analyses during summers 2017-19 in Colusa and Lake Counties, California, USA. 

 

aCapture history is the total detections used for secr input data. Proximity detectors only allow one detection of an individual per 

detector. 
bRecaptures are the total number of samples representing redetections at > 1 detector (i.e. not number of individuals recaptured), 

this number excludes eliminated samples that violate this rule. 
cTotal individuals include 38 (14 M, 24 F) of the individuals initially sampled in 2017. 
dTotal individuals include 24 (10 M, 14 F) of the individuals initially sampled in 2018. 
eTotal individuals does not include recaptured individuals. In other words, this number does not include double counted individuals, 

but rather reflects the realized total number of individuals detected through genotyping. 

 

 Year Samples Genotypes 
Capture 
Historya 

Total 
Individuals 

M F Recapturesb 

Cache Creek 

2017 513 358 300 161 72 89 139 

2019 497 315 273 157c 65c 92c 116 

Total 1,010 673 573 265 118 147 255 
         

Lake Pillsbury 

2018 191 125 120 80 46 34 40 

2019 291 155 132 79d 31d 48d 53 

Total 482 280 252 128 62 66 93 
         

East Park Res. 
2018 124 49 46 32 20 12 14 

Total 124 49 46 32 20 12 14 
         

Colusa/Lake 
Counties 

Total 1,616 1,002 871 425e 200e 225e 363 
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Table 2. Genetic summary statistics for tule elk from fecal pellet samples gathered across three herd ranges in 

Colusa and Lake Counties, California, USA, from June to August 2017-19. For each microsatellite locus, and 

across all loci, the table displays the average number of alleles observed per locus (NA), observed 

heterozygosity (HO), expected heterozygosity (HE), the inbreeding coefficient (FIS), probability of identity (PID), 

and probability of sibship (PSIB). 

  NA HO HE FIS PID PSIB 

T193 3 0.388 0.451 -0.062 0.387 0.622 

T26 5 0.402 0.581 0.063 0.258 0.524 

TE132 2 0.138 0.329 0.045 0.504 0.712 

TE145 3 0.341 0.476 -0.034 0.340 0.597 

TE159 2 0.242 0.277 0.070 0.561 0.752 

TE167 3 0.153 0.184 0.085 0.679 0.828 

TE179 2 0.251 0.292 0.066 0.543 0.740 

TE182 3 0.465 0.596 -0.046 0.246 0.514 

TE185 7 0.317 0.376 0.003 0.408 0.664 

TE45 5 0.263 0.284 -0.066 0.531 0.741 

TE84 4 0.348 0.481 0.139 0.380 0.605 

TE85 3 0.360 0.463 0.196 0.395 0.617 

T108 5 0.560 0.561 -0.276 0.233 0.528 

T172 3 0.410 0.525 0.032 0.328 0.570 

T501 3 0.277 0.387 -0.002 0.410 0.659 

TE105 2 0.229 0.278 0.038 0.560 0.751 

TE169 2 0.297 0.332 0.037 0.501 0.709 

TE68 3 0.177 0.193 -0.040 0.661 0.819 

TE83 3 0.334 0.390 -0.010 0.432 0.663 

TE88 2 0.313 0.328 0.010 0.506 0.713 

All locia 3.3 0.313 0.389 0.012 3.59E-08 2.45E-04 
aWe averaged NA, HO, HE, and FIS across loci. We multiplied the PID and PSIB values across loci. 
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Table 3. Stepwise model rankings for spatially explicit capture-capture (SCR) analysis for density and abundance estimation of tule elk in Colusa and 

Lake Counties, California, USA. We used Akaike's Information Criterion (AIC) to rank the models in each step. We used the optimal detection 

function (detectfn) identified in step 1 for each population for the entirety of each population's respective modelling process. In step 2 we 

compared null model with the effect of the mixing proportion (pmix) on the observation model. In step 3 we modelled heterogeneous density with 

variation influenced by three covariates: mean diurnal temperature range ("bio2" in the WorldClim dataset; Hijmans et al. 2005), habitat 

classification, and soil classification. 

Pop'n  Model detectfn Ka logLik AIC ΔAIC AICw
b 

Cache Creek 

Step 1        

 D~1 g0~1 sigma~1 exponential 3 -2786.79 5579.576 0 1 
 D~1 g0~1 sigma~1 halfnormal 3 -2849.5 5705.009 125.432 0 

Step 2        

 D~1 g0~1 sigma~1 pmix~h2 exponential 4 -3004.16 6016.31 0 0.6306 
 D~1 g0~h2 sigma~h2 pmix~h2 exponential 6 -3002.69 6017.38 1.07 0.3694 

Step 3        

 D~bio2 + habitat + soil g0~h2 sigma~h2 pmix~h2 exponential 24 -2843.23 5734.469 0 0.9869 
 D~habitat + soil g0~h2 sigma~h2 pmix~h2 exponential 23 -2848.56 5743.119 8.65 0.0131 
 D~soil g0~h2 sigma~h2 pmix~h2 exponential 21 -2861.15 5764.305 29.836 0 
 D~bio2 + soil g0~h2 sigma~h2 pmix~h2 exponential 22 -2873.87 5791.74 57.271 0 
 D~bio2 + habitat g0~h2 sigma~h2 pmix~h2 exponential 9 -2971.88 5961.767 227.298 0 
 D~habitat g0~h2 sigma~h2 pmix~h2 exponential 8 -2977.85 5971.69 237.221 0 
 D~1 g0~h2 sigma~h2 pmix~h2 exponential 6 -3002.69 6017.38 282.911 0 
 D~bio2 g0~h2 sigma~h2 pmix~h2 exponential 7 -3002.81 6019.627 285.158 0 

Lake Pillsbury 

Step 1        

 D~1 g0~1 sigma~1 exponential 3 -1185.59 2377.179 0 1 
 D~1 g0~1 sigma~1 halfnormal 3 -1192.5 2390.997 13.818 0 

Step 2        

 D~1 g0~1 sigma~1 pmix~h2 exponential 4 -1295.72 2599.443 0 0.6909 
 D~1 g0~h2 sigma~h2 pmix~h2 exponential 6 -1294.53 2601.052 1.609 0.3091 

Step 3        

 D~habitat + soil g0~h2 sigma~h2 pmix~h2 exponential 13 -1156.6 2339.2 0 0.9721 
 D~bio2 + habitat + soil g0~h2 sigma~h2 pmix~h2 exponential 14 -1159.15 2346.302 7.102 0.0279 
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 D~bio2 + soil g0~h2 sigma~h2 pmix~h2 exponential 13 -1178.49 2382.987 43.787 0 
 D~soil g0~h2 sigma~h2 pmix~h2 exponential 12 -1186.15 2396.304 57.104 0 
 D~bio2 + habitat g0~h2 sigma~h2 pmix~h2 exponential 8 -1225.12 2466.244 127.044 0 
 D~habitat g0~h2 sigma~h2 pmix~h2 exponential 7 -1240.28 2494.567 155.367 0 
 D~bio2 g0~h2 sigma~h2 pmix~h2 exponential 7 -1280.73 2575.467 236.267 0 
 D~1 g0~h2 sigma~h2 pmix~h2 exponential 6 -1294.53 2601.052 261.852 0 

East Park Reservoir 

Step 1        

 D~1 g0~1 sigma~1 exponential 3 -239.893 485.786 0 0.7785 
 D~1 g0~1 sigma~1 halfnormal 3 -241.15 488.3 2.514 0.2215 

Step 2        

 D~1 g0~h2 sigma~h2 pmix~h2 exponential 6 -258.915 529.831 0 0.5368 
 D~1 g0~1 sigma~1 pmix~h2 exponential 4 -261.063 530.126 0.295 0.4632 

Step 3        

 D~habitat g0~h2 sigma~h2 pmix~h2 exponential 8 -246.773 509.547 0 0.7211 
 D~bio2 + habitat g0~h2 sigma~h2 pmix~h2 exponential 9 -246.777 511.555 2.008 0.2642 
 D~habitat + soil g0~h2 sigma~h2 pmix~h2 exponential 19 -240.076 518.152 8.605 0.0098 
 D~bio2 + habitat + soil g0~h2 sigma~h2 pmix~h2 exponential 20 -239.768 519.535 9.988 0.0049 
 D~soil g0~h2 sigma~h2 pmix~h2 exponential 17 -245.199 524.399 14.852 0 
 D~bio2 + soil g0~h2 sigma~h2 pmix~h2 exponential 18 -245.271 526.542 16.995 0 
 D~bio2 g0~h2 sigma~h2 pmix~h2 exponential 7 -256.702 527.403 17.856 0 
 D~1 g0~h2 sigma~h2 pmix~h2 exponential 6 -258.909 529.817 20.27 0 

 
aK is the number of parameters the model estimated. 
bWe used the AIC weights (AICw) to model average results for models with ΔAIC ≤2  in step 3. 



 

77 
 

Table 4. Parameter estimates from homogeneous density and best-fit heterogeneous density secr hybrid mixture (hcov) models for tule elk populations (pop'n) 

in Colusa and Lake Counties, CA. Results are displayed for both sexes combined, with estimates for females and males derived from the mixture proportion 

(pmix) of the 2 sexes, for each population. Parameters include density (D̂), abundance (N̂), probability of detection (g0), scale of movement (σ), as well as pmix, 

and relative standard error of density estimates (RSE(D̂)), a measure of the precision of a fitted secr model. The standard error (SE) and 95% confidence intervals 

are shown. Elk density is elk/km2 and sigma is in meters.  

Pop'n Year Model D̂ N̂ g0 σ pmix RSE(D̂) 

Cache 
Creek 

706 km2 

  D~1            

2017 

Combined 0.47 ± 0.05 (0.39-0.57) 332 ± 35 (275-402) - - - 0.10 

Female 0.27 ± 0.03 (0.22-0.33) 190 ± 20 (155-233) 0.06 ± 0.01 (0.04-0.07) 728 ± 51 (635-836) 0.57 - 

Male 0.20 ± 0.02 (0.17-0.25) 142 ± 15 (120-177) 0.05 ± 0.01 (0.04-0.07) 857 ± 62 (744-987) 0.43 - 

2019 

Combined 0.46 ± 0.04 (0.38-0.56) 325 ± 28 (268-395) - - - 0.10 

Female 
0.26  ± 0.02 (0.21-

0.32) 
184  ± 14 (148-

226) 
0.06 ± 0.01 (0.04-0.07) 728 ± 51 (635-836) 0.57 - 

Male 
0.20  ± 0.02 (0.16-

0.24) 
141  ± 14 (113-

169) 
0.05 ± 0.01 (0.04-0.07) 857 ± 62 (744-987) 0.43 - 

  
D~bio2+habitat 

+soil 
           

2017 

Combined 0.46 ± 0.05 (0.37-0.56) 325 ± 35 (261-395) - - - 0.10 

Female 0.24 ± 0.03 (0.19-0.29) 169 ± 20 (134-205) 0.07 ± 0.01 (0.06-0.09) 688 ± 58 (584-811) 0.51 - 

Male 0.22 ± 0.02 (0.18-0.27) 155 ± 15 (127-191) 0.06 ± 0.01 (0.05-0.09) 861 ± 59 (753-985) 0.49 - 

2019 

Combined 0.45 ± 0.05 (0.37-0.56) 318 ± 35 (261-395) - - - 0.11 

Female 0.23 ± 0.03 (0.19-0.29) 162 ± 20 (134-205) 0.07 ± 0.01 (0.06-0.09) 688 ± 58 (584-811) 0.51 - 

Male 0.22 ± 0.02 (0.18-0.27) 155 ± 15 (127-191) 0.06 ± 0.01 (0.05-0.09) 861 ± 59 (753-985) 0.49 - 

Lake 
Pillsbury 
189 km2 

  D~1            

2018 

Combined 1.7 ± 0.23 (1.3-2.2) 321 ± 43 (246-416) - - - 0.14 

Female 0.88 ± 0.12 (0.68-1.1) 166 ± 23 (129-208) 0.06 ± 0.01 (0.04-0.09) 389 ± 42 (315-480) 0.52 - 

Male 0.82 ± 0.11 (0.62-1.1) 155 ± 21 (117-208) 0.05 ± 0.01 (0.03-0.08) 484 ± 60 (380-616) 0.48 - 

2019 

Combined 1.7 ± 0.24 (1.3-2.2) 321 ± 45 (246-416) - - - 0.14 

Female 0.88 ± 0.13 (0.68-1.1) 166 ± 25 (129-208) 0.06 ± 0.01 (0.04-0.09) 389 ± 42 (315-480) 0.52 - 

Male 0.82 ± 0.12 (0.62-1.1) 155 ± 23 (117-208) 0.05 ± 0.01 (0.03-0.08) 484 ± 60 (380-616) 0.48 - 

  D~habitat + soil            
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2018 

Combined 1.4 ± 0.18 (1.1-1.8) 265 ± 34 (208-340) - - - 0.13 

Female 0.73 ± 0.09 (0.57-0.94) 138 ± 17 (108-178) 0.06 ± 0.02 (0.04-0.10) 417 ± 34 (355-490) 0.52 - 

Male 0.67 ± 0.09 (0.53-0.86) 127 ± 17 (100-163) 0.03 ± 0.01 (0.02-0.05) 669 ± 72 (543-825) 0.48 - 

2019 

Combined 1.5 ± 0.19 (1.1-1.9) 284 ± 36 (208-359) - - - 0.13 

Female 0.78 ± 0.10 (0.57-0.99) 147 ± 19 (108-187) 0.06 ± 0.02 (0.04-0.10) 417 ± 34 (355-490) 0.52 - 

Male 0.72 ± 0.09 (0.53-0.91) 136 ± 17 (100-172) 0.03 ± 0.01 (0.02-0.05) 669 ± 72 (543-825) 0.48 - 

East Park 
Res. 

200 km2 

  D~1             

2018 

Combined 0.41 ± 0.16 (0.19-0.86) 82 ± 32 (38-172) - - - 0.4 

Female 0.16 ± 0.06 (0.07-0.33) 32 ± 12 (14-66) 0.005 ± 0.006 (0.001-0.05) 
2940 ± 4209 (371-

23290) 
0.38 - 

Male 0.25 ± 0.09 (0.12-0.53) 50 ± 18 (24-106) 0.02 ± 0.01 (0.01-0.05) 759 ± 211 (445-1297) 0.62 - 

  D~habitat            

2018 

Combined 0.31 ± 0.09 (0.17-0.55) 62 ± 18 (34-110) - - - 0.3 

Female 0.12 ± 0.03 (0.06-0.21) 24 ± 6 (12-42) 
0.002 ± 0.001 (0.0003-

0.006) 
8970 ± 7852 (2045-

39339) 
0.38 - 

Male 0.19 ± 0.06 (0.11-.34) 38 ± 12 (22-68) 0.02 ± 0.01 (0.01-0.06) 876 ± 201 (561-1366) 0.62 - 
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Table 5. Spatial clustering data of activity centers of GPS collared tule elk in Colusa and Lake Counties, CA, 
including for males (M) and females (F) number of elk (n), average nearest-neighbor distance (in meters) 
expected if activity centers are randomly (Poisson) distributed on the landscape (Exp) and observed average 
nearest-neighbor distances (Obs), for 3 populations sampled in one or two years in Lake and Colusa County, 
California, during 2017–2019. 

  

Population Year 
n-M 

Exp-M 
(m)  

Obs-M 
(m) 

n-F 
Exp-F 
(m) 

Obs-F 
(m) 

Cache Creek 2017 23 1877 1134 22 1287 607 

Cache Creek 2019 15 1704 1486 18 1827 778 

Lake Pillsbury 2018 6 309 337 5 25 77 

Lake Pillsbury 2019 5 1139 2218 4 26 65 

East Park Reservoir 2018 3 87 52 7 690 568 
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Supplementary Figure 1. Density (D̂) surface (30 m resolution) (left) and predictive habitat model (right) across the Cache Creek estimated range boundary in 
Colusa County, CA, USA. The D̂ surface is based on the best-fit spatial capture-recapture model describing elk/km2 across during summers of 2017 and 2019. 
Warmer colors indicated higher levels of predicted density. Sampled transects are outlined in black. Genotyped fDNA for male and female elk are indicated 
by gray and black circles, respectively. The activity centers (AC) for males (Δ) and females (ꓫ) are color coded by year. The predictive habitat model surface 
shows the relative probability of occurrence (RPO) of tule elk in Colusa and Lake Counties, CA. Elk detections used to produce the model are displayed as 
gray circles. Warmer surface colors indicate areas predicted to have more suitable environmental conditions (higher RPO). Putative range boundary is 
outlined in white. 

Section II Supplementary Figures
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Supplementary Figure 2. Density (D̂) surface (30 m resolution) (left) and predictive habitat model (right) across the Lake Pillsbury estimated range boundary 
in Lake County, CA, USA. The D̂ surface is based on the best-fit spatial capture-recapture model describing elk/km2 during summers of 2018 and 2019. 
Warmer colors indicated higher levels of predicted density. Sampled transects are outlined in black. Genotyped fDNA for male and female elk are indicated 
by gray and black circles, respectively. The activity centers (AC) for males (Δ) and females (ꓫ) are color coded by year. The predictive habitat model surface 
shows the relative probability of occurrence (RPO) of tule elk in Colusa and Lake Counties, CA. Elk detections used to produce the model are displayed as 
gray circles. Warmer surface colors indicate areas predicted to have more suitable environmental conditions (higher RPO). Putative range boundary is 
outlined in white. 
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Supplementary Figure 3. Density (D̂) surface (30 m resolution) (left) and predictive habitat model (right) across the East Park Reservoir estimated range 
boundary in Colusa County, CA, USA. The D̂ surface is based on averaged spatial capture-recapture models <2 ΔAIC describing elk/km2 across, during summer 
2018. Warmer colors indicated higher levels of predicted density. Sampled transects are outlined in black. Genotyped fDNA for male and female elk are 
indicated by gray and black circles, respectively. The activity centers (AC) for males (Δ) and females (ꓫ) are color coded by year. The predictive habitat model 
surface shows the relative probability of occurrence (RPO) of tule elk in Colusa and Lake Counties, CA. Elk detections used to produce the model are 
displayed as gray circles. Warmer surface colors indicate areas predicted to have more suitable environmental conditions (higher RPO). Putative range 
boundary is outlined in white. 
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Section II Supplementary Tables 

Supplementary Table 1. Stepwise selection process for secr models for estimating density and abundance of 

tule elk in Colusa and Lake Counties, CA. 

Step 
Number 

Model 
Number 

Model Description 
Detection 
Function 

Additional 
Parameters 

1 1 D~1 g0~1 σ~1 halfnormal - 

 2 D~1 g0~1 σ~1 exponential - 

2 3 D~1 g0~1 σ~1 pmix~h2 step 1 df pmix 

 4 D~1 g0~h2 σ~h2 pmix~h2 step 1 df pmix 

3 5 D~bio2 g0~h2 σ~h2 pmix~h2 step 1 df pmix 

 6 D~habitat g0~h2 σ~h2 pmix~h2 step 1 df pmix 

 7 D~soil g0~h2 σ~h2 pmix~h2 step 1 df pmix 

 8 D~bio2+habitat g0~h2 σ~h2 pmix~h2 step 1 df pmix 

 9 D~bio2+soil g0~h2 σ~h2 pmix~h2 step 1 df pmix 

 10 D~habitat+soil g0~h2 σ~h2 pmix~h2 step 1 df pmix 

 
11 

D~bio2+habitat+soil g0~h2 σ~h2 
pmix~h2 

step 1 df pmix 
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Supplementary Table 2. Classification of habitat types based on the relative probability of occurrence (RPO) as 

determined by a predictive habitat suitability model (Section I) for secr modeling of tule elk density and 

abundance in Colusa and Lake Counties, CA. We divided habitat types into prime, moderate, and poor 

classifications for secr modeling. 

Habitat Classification Habitat Type 

Prime Relative probability of occurrence (RPO) > 0.095 

 Perennial Grassland 
 Hardwood-Conifer 
 Montane Riparian 
 Lacustrine 
 Hardwood 
 Blue Oak-Valley Oak Dominant 

Moderate RPO: 0.046-0.079 
 Annual Grassland 
 Klamath Conifer 
 Desert Riparian 
 Mixed Chaparral 
 Irrigated Agriculture 
 Cropland 
 Orchard 
 Rice 
 Barren 
 Conifer Forest 
 Coastal Oak Woodland 
 Montane Chaparral 
 Chamise-Redshank Chaparral 
 Sagebrush 
 Coastal Scrub 
 Riverine 
 Fresh Emergent Wetland 
 Wet Meadow 
 Valley Foothill Riparian 
 Pasture 

Poor RPO < 0.046 
 Urban 
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Supplementary Table 3. Taxonomic subgroup classification of soils for secr modeling of tule elk density and 

abundance in Colusa and Lake Counties, CA. 

Soil Taxonomic Subgroup 

Aeric Fluvaquents 

Aridic Haploxererts 

Cumulic Haploxerolls 

Lithic Argixerolls 

Lithic Dystroxerepts 

Lithic Haploxerepts 

Lithic Haploxerolls 

Lithic Xerorthents 

Mollic Haploxeralfs 

Mollic Palexeralfs 

Mollic Xerofluvents 

Pachic Argixerolls 

Sodic Endoaquerts 

Typic Argixerolls 

Typic Dystroxerepts 

Typic Haplohemists 

Typic Haploxeralfs 

Typic Haploxerepts 

Typic Haploxererts 

Typic Palexeralfs 

Typic Vitrixerands 

Ultic Haploxeralfs 

Ultic Haploxerolls 

Ultic Palexeralfs 

Xeric Endoaquerts 
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Supplementary Table 4. Genetic summary statistics for tule elk from fecal pellet samples gathered from Cache 

Creek in Colusa and Lake Counties, California, USA from June to August 2017-19. For each microsatellite locus, 

and across all loci, the table displays the number of individuals per population sample genotyped per locus (N), 

the total number of alleles observed per population sample per locus (A), the percentage of total alleles 

observed across population samples per population sample per locus (%), allelic richness per locus (Ar), 

observed heterozygosity (HO), expected heterozygosity (HE), deviation from Hardy-Weinberg Equilibrium 

(HWE), the inbreeding coefficient (FIS), probability of identity (PID), and probability of sibship (PSIB). 

Cache Creek 

  N A % Ar HO HE HWE FIS PID PSIB 

T193 260 3 100 2.45 0.496 0.492 0.818 -0.008 3.7E-01 6.0E-01 

T26 251 5 100 4.08 0.530 0.593 0.001*** 0.106 2.3E-01 5.1E-01 

TE132 261 2 100 1.47 0.019 0.019 0.876 -0.010 9.6E-01 9.8E-01 

TE145 261 3 100 2.98 0.238 0.232 0.723 -0.024 6.0E-01 7.8E-01 

TE159 260 2 100 2 0.215 0.266 0.002** 0.189 5.7E-01 7.6E-01 

TE167 259 3 100 2.75 0.193 0.197 0.757 0.019 6.6E-01 8.2E-01 

TE179 261 2 100 2 0.257 0.330 0.000*** 0.223 5.0E-01 7.1E-01 

TE182 261 3 100 3 0.502 0.569 0.002** 0.117 2.7E-01 5.3E-01 

TE185 253 6 85.71 4.73 0.257 0.333 0.000*** 0.229 4.6E-01 7.0E-01 

TE45 261 5 100 3.29 0.130 0.128 0.100 -0.018 7.6E-01 8.8E-01 

TE84 261 4 100 2.23 0.360 0.435 0.107 0.172 4.1E-01 6.4E-01 

TE85 261 2 66.67 2 0.418 0.486 0.023* 0.140 3.8E-01 6.0E-01 

T108 261 4 80 3.4 0.483 0.481 0.585 -0.003 3.3E-01 5.9E-01 

T172 258 3 100 2.96 0.496 0.538 0.286 0.078 3.1E-01 5.6E-01 

T501 261 3 100 2.81 0.180 0.211 0.006** 0.146 6.4E-01 8.0E-01 

TE105 261 2 100 1.99 0.138 0.128 0.231 -0.074 7.7E-01 8.8E-01 

TE169 261 2 100 2 0.188 0.206 0.144 0.090 6.5E-01 8.1E-01 

TE68 261 3 100 2.78 0.230 0.237 0.854 0.031 6.0E-01 7.8E-01 

TE83 261 3 100 2.46 0.230 0.240 0.663 0.043 6.0E-01 7.8E-01 

TE88 261 2 100 2 0.291 0.337 0.028* 0.136 5.0E-01 7.1E-01 

All locia 259.75 62 96.62 2.67 0.293 0.323 0.512 0.079 8.2E-07 1.1E-03 
aWe summed A, and averaged N, %, Ar, HO, HE, HWE, and FIS across loci; We multiplied the PID and PSIB values across all loci. 

*p<0.05, **p<0.01, ***p<0.001 
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Supplementary Table 5. Genetic summary statistics for tule elk from fecal pellet samples gathered from Lake 

Pillsbury in Lake County, California, USA from June to August 2018-19. For each microsatellite locus, and 

across all loci, the table displays the number of individuals per population sample genotyped per locus (N), the 

total number of alleles observed per population sample per locus (A), the percentage of total alleles observed 

across population samples per population sample per locus (%), allelic richness per locus (Ar), observed 

heterozygosity (HO), expected heterozygosity (HE), deviation from Hardy-Weinberg Equilibrium (HWE), the 

inbreeding coefficient (FIS), probability of identity (PID), and probability of sibship (PSIB). 

Lake Pillsbury 

  N A % Ar HO HE HWE FIS PID PSIB 

T193 126 2 66.67 1.96 0.095 0.091 0.997 -0.050 0.831 0.912 

T26 125 4 80 2.63 0.216 0.220 0.591 0.018 0.628 0.797 

TE132 126 2 100 2 0.421 0.442 0.402 0.048 0.409 0.631 

TE145 126 2 66.67 2 0.524 0.487 0.820 -0.075 0.382 0.602 

TE159 126 2 100 2 0.357 0.350 N/A -0.020 0.484 0.696 

TE167 126 1 33.33 1 0.000 0.000 0.147 N/A 1.000 1.000 

TE179 126 2 100 2 0.302 0.267 0.601 -0.129 0.573 0.760 

TE182 126 2 66.67 2 0.357 0.341 0.836 -0.047 0.492 0.702 

TE185 125 4 57.14 3.02 0.424 0.421 0.070 -0.007 0.403 0.640 

TE45 126 3 60 3 0.540 0.516 0.635 -0.045 0.300 0.567 

TE84 126 3 75 2.4 0.413 0.462 0.002 0.107 0.389 0.616 

TE85 126 2 66.67 2 0.325 0.447 0.409** 0.272 0.406 0.628 

T108 125 4 80 3.56 0.648 0.579 0.890 -0.120 0.257 0.525 

T172 125 2 66.67 2 0.304 0.300 0.059 -0.012 0.535 0.734 

T501 126 2 66.67 2 0.365 0.439 0.343 0.168 0.411 0.633 

TE105 126 2 100 2 0.389 0.359 0.331 -0.084 0.476 0.690 

TE169 125 2 100 2 0.520 0.478 N/A -0.087 0.387 0.607 

TE68 126 1 33.33 1 0.000 0.000 0.574 N/A 1.000 1.000 

TE83 126 2 66.67 2 0.468 0.493 0.081 0.050 0.379 0.598 

TE88 126 2 100 2 0.373 0.323 N/A -0.155 0.511 0.716 

All locia 125.75 46 74.27 2.13 0.352 0.351 0.461 -0.009 4.3E-07 6.3E-04 
aWe summed A, and averaged N, %, Ar, HO, HE, HWE, and FIS across loci; We multiplied the PID and PSIB values across all loci. 

*p<0.05, **p<0.01, ***p<0.001 



 

88 
 

Supplementary Table 6. Genetic summary statistics for tule elk from fecal pellet samples gathered from East 

Park Reservoir in Colusa County, California, USA from June to August 2018. For each microsatellite locus, and 

across all loci, the table displays the number of individuals per population sample genotyped per locus (N), the 

total number of alleles observed per population sample per locus (A), the percentage of total alleles observed 

across population samples per population sample per locus (%), allelic richness per locus (Ar), observed 

heterozygosity (HO), expected heterozygosity (HE), deviation from Hardy-Weinberg Equilibrium (HWE), the 

inbreeding coefficient (FIS), probability of identity (PID), and probability of sibship (PSIB). 

East Park Reservoir 

  N A % Ar HO HE HWE FIS PID PSIB 

T193 32 3 100 3 0.656 0.592 0.707 -0.108 0.236 0.513 

T26 32 2 40 1.99 0.125 0.117 0.706 -0.067 0.786 0.888 

TE132 32 1 50 1 N/A N/A N/A N/A 1.000 1.000 

TE145 32 3 100 2.88 0.469 0.471 0.952 0.004 0.365 0.606 

TE159 32 1 50 1 N/A N/A N/A N/A 1.000 1.000 

TE167 32 2 66.67 2 0.438 0.492 0.530 0.111 0.379 0.599 

TE179 32 1 50 1 N/A N/A N/A N/A 1.000 1.000 

TE182 32 3 100 2.95 0.594 0.479 0.477 -0.240 0.350 0.598 

TE185 32 2 28.57 2 0.375 0.305 0.192 -0.231 0.530 0.730 

TE45 32 2 40 2 0.250 0.219 0.419 -0.143 0.634 0.799 

TE84 32 1 25 1 N/A N/A N/A N/A 1.000 1.000 

TE85 32 2 66.67 1.64 0.031 0.031 0.928 -0.016 0.940 0.970 

T108 32 2 40 2 0.844 0.488 0.000*** -0.730 0.381 0.601 

T172 32 2 66.67 1.99 0.125 0.117 0.706 -0.067 0.786 0.888 

T501 32 3 100 3 0.719 0.611 0.375 -0.177 0.234 0.503 

TE105 32 2 100 2 0.344 0.417 0.318 0.177 0.426 0.648 

TE169 32 2 100 2 0.313 0.375 0.346 0.167 0.461 0.678 

TE68 32 2 66.67 2 0.438 0.404 0.642 -0.082 0.437 0.657 

TE83 32 3 100 3 0.656 0.608 0.734 -0.080 0.222 0.501 

TE88 32 2 100 2 0.250 0.264 0.769 0.052 0.577 0.762 

All locia 32 41 69.51 2.02 0.414 0.374 0.587 -0.089 2.2E-06 1.7E-03 
aWe summed A, and averaged N, %, Ar, HO, HE, HWE, and FIS across loci; We multiplied the PID and PSIB values across all loci. 

*p<0.05, **p<0.01, ***p<0.001 
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Supplementary Table 7.  Stepwise model rankings for spatially explicit capture-capture (SCR) analysis for density and abundance estimation of tule 

elk in Colusa and Lake Counties, California, USA. We modeled each sex seperately for each population. We used Akaike's Information Criterion (AIC) 

to rank the models in each step. We used the optimal detection function (detectfn) identified in step 1 for each population for the entirety of each 

population's respective modelling process. In step 2 we compared null model with the effect of the mixing proportion (pmix) on the observation 

model. In step 3 we modelled heterogeneous density with variation influenced by three covariates: mean diurnal temperature range ("bio2" in the 

WorldClim dataset; Hijmans et al. 2005), habitat classification, and soil classification. 

Pop'n Female Only Male Only 

C
ac

h
e 

C
re

ek
 

  model detectfn Ka 
logL

ik 
AIC ΔAIC 

AIC

w
b 

model detectfn Ka 
logLi

k 
AIC 

ΔAI
C 

AIC

w
b 

Step 1                

 D~1 g0~1 sigma~1 exponential 3 

-
164

3.97 
3293.

94 0 1 
D~1 g0~1 
sigma~1 exponential 3 

-
1349

.1 
2704.

21 0 1 

 D~1 g0~1 sigma~1 halfnormal 3 

-
167

1.15 
3348.

297 
54.3

56 0 
D~1 g0~1 
sigma~1 halfnormal 3 

-
1381

.52 
2769.

042 
64.8

32 0 

Step 2                

 

D~bio2 + habitat + 
soil g0~1 sigma~1 exponential 21 

-
151

9.82 
3081.

647 0 
0.81

89 

D~bio2 + habitat 
+ soil g0~1 
sigma~1 exponential 21 

-
1295

.18 
2632.

351 0 
0.43

15 

 

D~habitat + soil 
g0~1 sigma~1 exponential 20 

-
152

2.33 
3084.

665 
3.01

8 
0.18

11 
D~bio2 + soil 
g0~1 sigma~1 exponential 19 

-
1297

.32 
2632.

637 
0.28

6 
0.37

4 

 

D~soil g0~1 
sigma~1 exponential 18 

-
153

1.51 
3099.

017 
17.3

7 0 
D~habitat + soil 
g0~1 sigma~1 exponential 20 

-
1296

.97 
2633.

945 
1.59

4 
0.19

45 

 

D~bio2 + soil g0~1 
sigma~1 exponential 19 

-
154

7.53 
3133.

058 
51.4

11 0 
D~soil g0~1 
sigma~1 exponential 18 

-
1312

.76 
2661.

513 
29.1

62 0 

 

D~bio2 + habitat 
g0~1 sigma~1 exponential 6 

-
160

3.03 
3218.

054 
136.
407 0 

D~bio2 g0~1 
sigma~1 exponential 4 

-
1337

.18 
2682.

356 
50.0

05 0 
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D~habitat g0~1 
sigma~1 exponential 5 

-
161

5.81 
3241.

622 
159.
975 0 

D~habitat g0~1 
sigma~1 exponential 5 

-
1342

.35 
2694.

693 
62.3

42 0 

 

D~bio2 g0~1 
sigma~1 exponential 4 

-
163

7.19 
3282.

383 
200.
736 0 

D~bio2 + habitat 
g0~1 sigma~1 exponential 6 

-
1343

.36 
2698.

712 
66.3

61 0 

 D~1 g0~1 sigma~1 exponential 3 

-
164

3.97 
3293.

94 
212.
293 0 

D~1 g0~1 
sigma~1 exponential 3 

-
1349

.1 
2704.

21 
71.8

59 0 

La
ke

 P
ill

sb
u

ry
 

Step 1                

 D~1 g0~1 sigma~1 exponential 3 

-
669.
779 

1345.
558 0 1 

D~1 g0~1 
sigma~1 exponential 3 

-
617.
094 

1240.
188 0 

0.78
23 

 D~1 g0~1 sigma~1 halfnormal 3 

-
675.
705 

1357.
41 

11.8
51 0 

D~1 g0~1 
sigma~1 halfnormal 3 

-
618.
372 

1242.
745 

2.55
8 

0.21
77 

Step 2                

 

D~bio2 + 
habitat_class + soil 
g0~1 sigma~1 exponential 11 

-
493.
552 

1009.
105 0 1 

D~habitat + soil 
g0~1 sigma~1 exponential 10 

-
573.
483 

1166.
967 0 

0.85
04 

 

D~soil g0~1 
sigma~1 exponential 9 

-
514.
481 

1046.
962 

37.8
57 0 

D~soil g0~1 
sigma~1 exponential 9 

-
576.
222 

1170.
443 

3.47
6 

0.14
96 

 

D~bio2 + soil g0~1 
sigma~1 exponential 10 

-
514.
227 

1048.
455 

39.3
5 0 

D~bio2 + habitat 
g0~1 sigma~1 exponential 5 

-
585.
595 

1181.
189 

14.2
22 0 

 

D~bio2 + 
habitat_class g0~1 
sigma~1 exponential 5 

-
519.

76 
1049.

519 
40.4

14 0 
D~bio2 + soil 
g0~1 sigma~1 exponential 10 

-
580.
771 

1181.
542 

14.5
75 0 

 

D~habitat_class + 
soil g0~1 sigma~1 exponential 10 

-
516.
621 

1053.
243 

44.1
38 0 

D~bio2 + habitat 
+ soil g0~1 
sigma~1 exponential 11 

-
580.
234 

1182.
468 

15.5
01 0 

 

D~bio2 g0~1 
sigma~1 exponential 4 

-
542.
888 

1093.
777 

84.6
72 0 

D~bio2 g0~1 
sigma~1 exponential 4 

-
588.
583 

1185.
167 18.2 0 
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D~habitat_class 
g0~1 sigma~1 exponential 4 

-
621.
949 

1251.
899 

242.
794 0 

D~habitat g0~1 
sigma~1 exponential 4 

-
600.
082 

1208.
163 

41.1
96 0 

  D~1 g0~1 sigma~1 exponential 3 

-
669.
779 

1345.
558 

336.
453 0 

D~1 g0~1 
sigma~1 exponential 3 

-
617.
094 

1240.
188 

73.2
21 0 

Ea
st

 P
ar

k 
R

es
er

vo
ir

 

Step 1                

 D~1 g0~1 sigma~1 exponential 3 

-
97.7
777 

201.5
55 0 

0.52
17 

D~1 g0~1 
sigma~1 halfnormal 3 

-
158.
965 

323.9
3 0 

0.79
17 

 D~1 g0~1 sigma~1 halfnormal 3 

-
97.8
643 

201.7
29 

0.17
4 

0.47
83 

D~1 g0~1 
sigma~1 exponential 3 

-
160.
301 

326.6
01 

2.67
1 

0.20
83 

Step 2                

 

D~bio2 + soil g0~1 
sigma~1 exponential 16 

-
82.6
746 

197.3
49 0 

0.33
95 

D~habitat g0~1 
sigma~1 halfnormal 5 

-
138.
185 

286.3
7 0 

0.69
1 

 

D~bio2 + habitat 
g0~1 sigma~1 exponential 6 

-
92.7
276 

197.4
55 

0.10
6 

0.32
19 

D~bio2 + habitat 
g0~1 sigma~1 halfnormal 6 

-
138.
129 

288.2
58 

1.88
8 

0.26
88 

 

D~habitat g0~1 
sigma~1 exponential 5 

-
94.3
598 

198.7
2 

1.37
1 

0.17
1 

D~habitat + soil 
g0~1 sigma~1 halfnormal 14 

-
132.
205 

292.4
1 6.04 

0.03
37 

 

D~habitat + soil 
g0~1 sigma~1 exponential 17 

-
83.1
353 

200.2
71 

2.92
2 

0.07
88 

D~bio2 + soil 
g0~1 sigma~1 halfnormal 13 

-
134.
862 

295.7
25 

9.35
5 

0.00
64 

 D~1 g0~1 sigma~1 exponential 3 

-
97.7
777 

201.5
55 

4.20
6 

0.04
14 

D~bio2 + habitat 
+ soil g0~1 
sigma~1 halfnormal 15 

-
135.
792 

301.5
83 

15.2
13 0 

 

D~bio2 g0~1 
sigma~1 exponential 4 

-
97.2
953 

202.5
91 

5.24
2 

0.02
47 

D~bio2 g0~1 
sigma~1 halfnormal 4 

-
154.
275 

316.5
51 

30.1
81 0 

 

D~bio2 + habitat + 
soil g0~1 sigma~1 exponential 18 

-
83.3
814 

202.7
63 

5.41
4 

0.02
27 

D~1 g0~1 
sigma~1 halfnormal 3 

-
158.
965 

323.9
3 

37.5
6 0 
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D~soil g0~1 
sigma~1 exponential 15 

-
97.7
777 

225.5
55 

28.2
06 0 

D~soil g0~1 
sigma~1 halfnormal 12 

-
158.
965 

341.9
3 

55.5
6 0 

aK is the number of parameters the model estimated. 
bWe used the AIC weights (AICw) to model average results for models with ΔAIC ≤2  in step 3 
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Supplementary Table 8.  Parameter estimates from homogeneous density and best-fit heterogeneous density secr models for tule elk populations 

(pop'n) in Colusa and Lake Counties, CA. Results are displayed for both sexes modeled seperately for each population. Parameters include density 

(D̂), abundance (N̂), probability of detection (g0), scale of movement (σ), and relative standard error of density estimates (RSE(D̂)), a measure of the 

precision of a fitted secr model. The 95% confidence intervals are shown in parentheses. Elk density is elk/km2 and sigma is in meters. 

Pop'n Year Model D̂ N̂ g0 σ RSE(D̂) 

 
 D~bio2 + habitat + soil     - 

Cache 
Creek 

2017 
Female 

0.33 ± 0.05 (0.25-0.44) 233 ± 35 (177-311) 0.05 ± 0.01 (0.04-
0.06) 

702 ± 55 (602-
819) 

0.15 

2019 0.34 ± 0.05 (0.26-0.45) 240 ± 35 (184-317) 0.14 
 Model avg: D~bio2+habitat+soil, D~bio2 + soil, D~habitat + soil  - 

2017 
Male 

0.19 ± 0.03 (0.14-0.24) 134 ± 21 (99-169) 0.06 ± 0.01 (0.04-
0.08) 

866 ± 65 (748-
1,001) 

0.14 

2019 0.17 ± 0.02 (0.13-0.22) 120 ± 14 (92-155) 0.14 
  D~bio2 + habitat + soil    - 

Lake 
Pillsbur

y 

2018 
Female 

1.1  ± 0.22 (0.69-1.6) 
208  ± 42 (130-

302) 0.07 ± 0.01 (0.05-
0.10) 

291 ± 25 (245-
344) 

0.21 

2019 1.5  ± 0.30 (1.0-2.1) 
283  ± 56 (189-
397) 

0.19 

 D~habitat + soil     - 

2018 
Male 

0.90 ± 0.17 (0.63-1.3) 170 ± 32 (119-246) 0.04 ± 0.01 (0.03-
0.06) 

500 ± 54 (406-
617) 

0.19 

2019 0.61 ± 0.13 (0.40-0.92) 115 ± 25 (76-174) 0.21 

East 
Park 
Res. 

  
  

Model average: D~bio2 + soil, D~bio2 + 
habitat, D~habitat 

      - 

2018 Female 0.14 ± 0.07 (0.05-0.36) 28 ± 14 (10-72) 
0.01 ± 0.008 (0.004-

0.05) 
1203 ± 300 (745-

1948) 
0.52 

 
 

Model average: D~habitat, D~bio2 + 
habitat 

   - 

2018 Male 0.41 ± 0.13 (0.22-0.76) 82 ± 26 (44-152) 
0.02 ± 0.01 (0.007-

0.03) 
910 ± 102 (732-

1133) 
0.33 
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Appendix A – Fecal Pellet Sampling Guidelines for Elk 
UC Davis – Mammalian Ecology and Conservation Unit – elk fecal pellet sampling guidelines 

Tom Batter, Josh Bush, and Ben Sacks 

Draft updated: 2018/02/21 by T. Batter 

 

Overarching sample design scheme (Fig. A1) 

• Grid cells overlaid within estimated herd range boundary 

• Stratify grid cells according to Maxent model classification threshold into predicted presence and 

predicted absence 

• Randomly select a portion of predicated presence grid cells and a portion of predicted absence grid 

cells to sample 

• A grid cell selected for sampling will disqualify all bordering cells for sampling; the nearest the next 

sampled grid cell can be is 2km away (may have to make exceptions i.e. private land access) 

• To qualify for sampling, a cell must contain half of the cell area within the estimated herd boundary 

(cells that are sliced by the approximate herd boundary and have >1/2 of the cell area outside the 

boundary line will be excluded) 

• Once cells are selected for sampling, prepare a cell portfolio.  

o Include: cell, transect route, satellite image, topographic map, vegetation map  

o Electronically scout the area via Google Earth, ArcGIS, etc. to map out the expected route; 

determine which and to what extent travel routes must deviate from the planned route due to 

terrain, water bodies, vegetation type (specifically avoid dense chemise-type vegetation), land 

ownership, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

Sample scheme 1: Triangle transect – 2km segments (Fig. A2) 

Figure A1 Cache Creek tule elk herd approximate boundary (cca. 2017) overlaid with  
2km x 2km grid cells, each grid cell containing a centroid 

Figure A2 Close up of a triangle transect 
skeleton within a 2km x 2km grid cell; numbers 
indicate order of transect, arrows indicate 
direction of travel from the start point/towards 
the end point (indicated by the red point) 
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• Each cell contains a transect-based triangle survey skeleton 

• The start/end point is to be located at one of the vertices, i.e. the southwest or southeast corner of the 

grid cell or the mid-point of the northern horizontal cell boundary line, depending on the point of 

access 

• Each triangle skeleton is formed by three (3) segments, each ~2 km in length 

o Total distance covered: ~6km 

Sampling scheme 2: Mirrored linear transect – 2km segments (Fig. A3) 

• Each cell contains two linear transect survey skeletons 

• The start point is to be located at the mid-point of the 

vertical cell boundary lines or the mid-point of the 

horizontal cell boundary lines, depending on the point of 

access 

• Each mirrored skeleton is formed by two (2) segments, 

each ~2km in length, connected by a 500m segment 

o Total distance covered: ~4.25km 

• A transect will run 2km in a North-South or East-West 

fashion; upon reaching 2km, the next 2km transect will be 

connected by traveling 500m to the east or west (for a N-S 

transect) or 500m to the north or south (for an E-W 

transect) 

o The direction to travel at the end of a segment will 

be determined by the sampler; the sampler will 

choose the direction they consider elk use to be 

more likely based on electronic scouting of the cell, 

and on-the-ground landscape observations and/or elk sign observed (see next section: “ideal 

search areas…”) 

• The end point should occur 500m from the start point along the same horizontal or vertical cell 

boundary 

Sampling a transect 

• Use the GPS to navigate to the nearest point of the triangle depending on the point of access 

o GPS unit position format should be set to decimal degrees (hddd.ddddd°) and map datum to 

WGS 84 

• Sampling a triangle skeleton 

o Name the starting point using the convention CellName_A 

o i.e. RockQuarryA; cells contain a Unique ID and will also be issued a name ahead of time based 

on some dominant feature contained within that cell 

o Triangle transect will have 3 points (1 point at each vertex); the second point and third point, 

when reached, can be saved using abbreviations. In this case, RQ_B… RQ_C 

• Sampling a mirrored skeleton 

Figure A3 Close up of a mirrored linear transect 
skeleton within a 2km x 2km grid cell; numbers indicate 
order of transect, arrows indicate direction of travel; 
each black point indicates the start/end point of a 
segment with the transect start/end points labeled as 
such 
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o Name the starting point and ending point of a segment using the convention 

CellName_Segment(A/B)#(1/2)  

o i.e. RockQuarry_SegmentA1; the second point, the end point of the first segment, will then be 

RQ_SA2 

o The first point of the second segment will be named RQ_SB1, and the end point RQ_SB2 

o Mirror transect will have 4 points (1 point at each start/end point for each segment)\ 

• From the starting point, travel towards the next point following the pre-determined triangle skeleton 

or pre-determined mirrored skeleton  

• Search for pellets, elk tracks, or other elk sign along transect segment, as well as areas near, adjacent 

to, neighboring, close by, etc. that may attract elk use without deviating >150 meters from the triangle 

skeleton on either side 

o Other sign includes, but is not limited to, direct elk observation, hair (on barbed wire, power 

line poles, or other rubbing surface), antler scrapes, wallows, browse sign, antler sheds, 

bedding areas, etc. (see: Index I) 

o Document any elk sign observed on both the elk sign data sheet and log into the GPS 

• Ideal search areas include the following: 

o Nearby watering holes, ponds, streams, creeks, etc. 

o Flat or gently sloping, grassy plains, especially flat areas contained within sloped terrain (i.e. the 

crest or peak of a slope) 

o Oak-savannah, especially later into the summer/fall when diet shifts to browse due to lack of 

palatable grasses and forbs 

o More obvious, relatively wide (compared to deer/hog) game trails 

▪ Elk don’t typically travel single file such as cattle, so a “game trail” will occur over a 

wider area assuming a decent sized group travels the region; the exception are solitary 

bulls or small bands of elk which are less conspicuous  

o Bedding areas, usually in shady areas (i.e. under oak groves, high grass) 

o Note: thick, brushy areas (i.e. wooded areas with dense secondary canopy, or chaparral-

dominant communities) are less likely to be used by elk; search these areas if/when obvious elk 

sign is observed within this type of habitat i.e. tracks, pellets, etc. 

▪ Collar data shows some bull use of rocky, chaparral-scrub dominant areas; the key 

difference is presumably lower vegetation density. Greater spacing allows for easy 

travel while still providing cover 

• Save tracks once the transect has been completed using the convention: YYYYMMDD_CellName i.e. 

20170503_RockQuarry 

• Write total track distance traveled on the data sheet in the proper location 

Selecting and collecting pellets 

Here we define an elk pellet group (“pg”) as: 

An assemblage of 6 or more intact pellets judged by the collector to have been continuously voided, by 

the same individual animal, at the place where they are observed/to be collected 

 

Freshest pellets in the given area will be collected following classification guidelines adapted from the CDFW 
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NCR Deer abundance collection protocol based on the pellets’ condition: 
 

❖ Eroded: Outer coating has been weathered, pellet is cracked. DO NOT COLLECT 
❖ Dull: Whole but no longer shiny, may or may not be cracked. DO NOT COLLECT 
❖ Malleable: Not wet or shiny, but contains enough moisture to be molded. COLLECT 
❖ Shiny: Not wet, but still has a mucus coating or shiny dark color. COLLECT 
❖ Wet: Some of the pellets (mostly inner) are wet, outer still dry. COLLECT 
❖ Slimy: Every pellet is wet. COLLECT 
o Note: in very dry environments (i.e. Cache Creek, Colusa County, CA), a majority of the pellet 

samples encountered may be dull and dry. Collect the darkest pellets within the pellet group. 
 

• Elk pellets are significantly larger compared to deer pellets, in both size and in quantity, and may be 

clumped together or scattered in a concentrated or relatively wide area (see: Index II) 

• If the pellets fall into a collectable category, scoop 4-6 pellets into a tube without touching them and 

seal the lid 

o Seek pellets toward the center of the group and towards the bottom or center of the pile 

(better protected from the elements) 

o Use a stick or sticks to separate clumped pellets (avoid breaking pellets, exposing vegetable 

material) and to move the pellets into the tube 

o For small pellets try to equal mass of 4-6 normal pellets, and denote this sample as likely to be 

“calf” 

• If an exorbitant amount of pellet groups are encountered on the landscape, collect collector must use 

judgment to collect a subset of the freshest pellets available 

o Elk pellet groups generally occur in clusters; where there is one pellet group, more are likely to 

be near; therefore, upon detecting and collecting elk pellets, intensify the search effort over 

the immediate area 

o Collect samples from pellet groups that are more distant from one another, i.e. when 

encountering numerous pellet groups over an extended area, grid the area out to the best of 

your ability in your mind or on a piece of field notebook paper and attempt to collect pellets in 

a fashion that represents the whole area (i.e. not concentrated in one spot) 

• If the only pellets that are encountered are older (i.e. eroded, dull) collect these pellets in the same 

fashion as described; document the quality of the sample on the data sheet and the sample tube 

• Create a waypoint for each sample collected (waypoint ID can simply be the next autofilled number 
the GPS unit provides) 

o Write the corresponding waypoint on the data sheet, along with the GPS coordinates, the 
labelling convention, and the sample condition 

• Label each sample tube as it becomes filled with a pellet group sample using the following convention: 
o GridCellNumber_PelletGroup# 
o i.e. If you are collecting within cell 2175 and collecting pellet group 17 you will write on the vial 

and lid: 2175 P17 
• Upon completion of sampling, return samples to the lab, office, etc. and fill each vial containing pellets 

with 95-100% ethanol; be sure all pellets are COMPLETELY submerged in ethanol! 
o Pellets will absorb ethanol. Add a sufficient amount to account for absorption to still maintain 

complete submergence. 
• Make sure vials are clearly labeled with pellet group number, plot number and date 
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• Transcribe pellets into master pellet spreadsheet 
• Storage: Ethanol will readily remove the ink from the tubes. Place all vials from a particular transect in 

a single zip lock bag labeled with plot and date. Rubber band vials together to help keep them upright  
• Put samples in a cooler out of direct sunlight, and out of contact with water or ice 
• Store coolers inside vehicle while working transects or at night to minimize risk of bear damage 

 

Data Transfer 

• At the conclusion of each field week update Plot Completion Status spreadsheet on Region 2 office 

server to note statuses of all plots visited. 

 

 

  

Data Type Instructions 

Transect Path 

Create a folder labeled as the cell name/cell number (e.g., RockQuarry) 
and use DNRGPS or Basecamp software to download the transect path 
track as a txt file. Label this file as the concatenation of plot number and 
“track” (e.g., RockQuarrytrack). 

Pellet Waypoints 

Use DNRGPS or Basecamp software to download the transect points 
(observations and pellet locations) and save as a .csv file. Label this file 
as the concatenation of cell name, “pts,” and date (e.g., 
RockQuarry_pts20170503). Place it in the same folder as above (e.g., 
RockQuarry) 

Data Sheets 
Create a folder labeled as the plot number (e.g., RockQuarry) and 
transfer scanned copies of data sheets to it. Label them as the 
concatenation of cell name and date (e.g., RockQuarry_20170503). 
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Appendix B – Elk Fecal Pellet Collection Datasheet 

 

 

Cell Name/Number Date Sample Type (circle): 
Triangle  /  Mirror 

Crew 

Herd:        
Start/End Transect distance (km) Page  

          ______  of ______ 

Pellet ID & 
Waypoint ID Condition 

GPS Coordinates & Notes 
Pellet ID & 
Waypoint ID  Condition 

GPS Coordinates & Notes 

[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  
[ ] slimy  [ ] slimy  
[ ] wet  [ ] wet  
[ ] shiny  [ ] shiny  
[ ] other  [ ] other  



 

100 
 

 



 

101 
 

Appendix C – Photographic Examples of Elk Sign 

 
  

Figure C1. Types of elk sign (clockwise left to right, top to bottom): direct observation, pellets, 
tracks (multiple), rub, track (single), antler scrape, hair, & carcass. Sign not pictured: hunter 
harvest, antler shed(s), elk bed(s), etc.  
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Appendix D – Protocol for Extracting Elk Pellets Using QIAGEN DNeasy 96 Blood & Tissue Kit 
 

MATERIALS: P1200 and P200 multichannel pipettes, P1000 and P200 single channel pipettes and tips, 1000uL tips, Qiagen 
DNeasy 96 blood & tissue kit (proteinase K, DNeasy 96 (spin column) plate, two S-blocks, light blue collection plate and plastic 
caps, blue elution/permanent plate and rubber caps, Airpore tape sheets, and buffers ASL, AL, AW1, AW2, and AE), 100% EtOH, 
reagent reservoirs (troughs), plate map (printed out), and one autoclaved 50 ml centrifuge tube (and lid) for each sample. 

*SAFETY NOTES* 

Always be familiar with the locations of first aid kit, eye wash station, and chemical spill kit, and always wear proper PPE: latex 
gloves, lab coat, and eye protection. 

DAY 1 

The volumes listed below reflect the values for a single plate. If you are doing two plates, use the number in parentheses/bold.  

1. Before starting: 

• Make sure you have all of the reagents you need for both days. 

• Turn on the large incubator to ~70°C. 

• In the Intern Extraction Notebook, write or print the lab/sample IDs for all samples to be extracted, giving each 
one a temporary extraction ID (i.e., 1-94 + 1 blank and 1 empty well per plate). Also include the date and initials of 
everyone working on the plate. 

• Label 95 autoclaved 50 ml centrifuge tubes with extraction IDs and use racks to keep the tubes upright. 

2. Clean the lab bench (10% bleach and a Clorox wipe) 

3. Place 1 pellet from each sample into its respective labeled centrifuge tube. Place the racks of 50 ml tubes (open, covered 
with a large Kimwipe) in the large incubator for 1.5+ hours to dry. The temperature is not super important; the only thing 
going on here is drying the EtOH. If you dry the pellets overnight, do so on the fecal extraction bench covered with a 
Kimwipe and proceed to day 2 the next morning. 

DAY 2 

4. Turn on the incubator to 56°C. 

5. Add 1.5 ml Buffer ATL to each sample. Mix each one manually to ensure that the pellet is at least partially immersed in the 
buffer. If not, use a stick to push the pellet to the bottom of the tube or add more buffer. Also add more buffer to especially 
large and/or absorbent pellets.  

6. Tape the racks on to the rocker and rock for ~30 minutes. Do not stack the racks. The shorter rocking time ensures that all 
pellets will have time on the rocker. After/before rocking, manually mix the tubes about every 10 minutes for an additional 
30 minutes so that the pellets soak in buffer for at least 1 hour total. 

7. Pipet 2 ml (4 ml) Proteinase K into a trough and multichannel 20 µl into each well of light blue collection plate. Also, label 
the blue elution/permanent plates you will need for later with plate ID, date, and extracting person(s) initials). Spin plates 
down if there is any proteinase K on the sides of the wells. 

8. After rocking, add 350 μl of the lysate from each tube into its respective well on the collection plate using the P1000 single 
channel. If the pellets absorb too much ATL (as is occasionally the case), add 100-200 µl ATL and swirl around. Make sure 
you can pipette a full 350 µl aliquot because balance is crucial! 

9. Using a large disposable pipette, add 34 ml (68 ml) Buffer AL (without EtOH) from the extraction kit to a 100 ml trough (NOT 
a 25 ml!) and multichannel out 350 µL into each well. Cover with plastic strip caps. 

10. Shake/invert the plate vigorously for 10 seconds. 
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NOTE: DO NOT do this with just the plastic plate cover on, as there is some space between the tops of the caps and the lid 
and the terrible caps will pop up during this step. Instead, press your hand evenly and firmly on top of the caps to keep 
them from popping. 

11. Spin plates down in the Sorvall (large plate spinner) at ~1000 rpm for 2 minutes. 

12. Incubate at 56°C for ten minutes. Caution: heat can cause the caps to pop off! Put something heavy on top or wrap an 
elastic band around the plastic plate cover.  

13. Remove plate(s) from incubator, check to make sure the caps have not popped off (and re-cap the rows if they are), 
shake/invert as before, and centrifuge briefly (2 minutes) to get liquid off the cap. Remove and discard the caps. 

14. Turn incubator to 70°C and put buffer AE in to warm it up. 

15. Using a large disposable pipette, add 34 ml (68 ml) 100% EtOH from the extraction kit (or flammable cabinet) to a 100 ml 
trough (NOT a 25 ml) and multichannel out 350 μl into each well.  

16. Cover with new caps and shake/invert for 10 seconds. 

17. Centrifuge at 1000 rpm for 2 minutes to pellet any remaining debris and get liquid off caps.  

18. Place a new DNeasy 96 plate onto an S-block. Using the P1200 multichannel, pipette 900 μl of the lysate mixture (avoiding 
any remaining solid particles) into the DNeasy 96 plate sitting on the S-block. To keep the S-block orientation straight, write 
an “x” or something on the side of the S-block underneath your first sample (so you know which well the A1 sample on the 
96 plate goes into). 

19. Cover with Airpore tape sheet and centrifuge the plate and S-block for 15 minutes at 5000 rpm. 

20. Using a large disposable pipette, add 48 ml (96 ml) Buffer AW1 to a trough and multichannel 500 μl to each well in the 
DNeasy 96 plate. Cover with an Airpore tape sheet, and centrifuge for 10 minutes at 5000 rpm. 

21. After centrifugation, put the DNeasy 96 (spin column) plate onto a clean S-block. Switching to a new block will allow us to 
spin the AW2 through without putting unnecessary stress on the machine due to heavy plates and also ensure that liquid 
won’t come in contact with the bottom of the plate. During this step (or at the end of the extraction), dump the contents of 
the full S-block into the appropriate waste container. 

22. Using a large disposable pipette, add 48 ml (96 ml) Buffer AW2 to a trough and multichannel 500 μl to each sample in the 
96 plate and, without covering it, centrifuge for 24 minutes at 5000 rpm. Put the orange lid on the rotor to avoid 
contamination or aerosolized stuff (since there is no Airpore sheet on). Lower the ramp up and down speeds to 4 to 
minimize the noise due to the lid.  

23. Place the DNeasy 96 plate on a labeled blue elution/permanent plate. Double check that your wells line up (i.e., A1 on the 
DNeasy 96 plate is in A1 of the blue elution plate). Then add 5 ml (10 ml) Buffer AE (warmed to 70°C) to a trough and, using 
the P200 multichannel, multichannel 50 μl directly onto the filter in DNeasy 96 plate (switch tips between each row). 
Incubate at room temperature for five minutes.  

24. After incubation, cover with an Airpore tape sheet and centrifuge the sample for 10 minutes at 5000 rpm. 

25. Cap the elution/permanent plate containing DNA sample and put into the refrigerator until ready for PCR. 

26. Clean up the lab area around you.  Check to make sure there are enough supplies for the next extraction – order another kit 
or supplies as necessary. 

 


