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IntroductionIntroduction

•

 

Evaluating  impacts of climate change 
on water resources and ecologic 
processes on the landscape is an 
integral part of land and resource 
management

 •

 

Spatial scale of climate projections is 
one of the largest constraints to 
environmental investigations

 •

 

Translation of climate projections into 
hydrologic response at a fine scale is 
necessary for understanding 
processes at the scale at which they 
occur
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Downscaled Projected Trends in December Precipitation Downscaled Projected Trends in December Precipitation 
by Two Approachesby Two Approaches

(GFDL CM2.1, A2 emissions, 21st Century)(GFDL CM2.1, A2 emissions, 21st Century)

Constructed
Analogues from Hidalgo et al., 2007

BCSD
Bias correction & spatial downscaling, from Ed 
Maurer, SCU



Processing of Climate Change ScenariosProcessing of Climate Change ScenariosProcessing of Climate Change Scenarios

•

 

Statistical Downscaling
•

 

GCM data at ~275-km resolution 
were downscaled to 12-km using 
constructed analogues

 •

 

Spatial Downscaling and Bias Correction
•

 

Spatially downscaled to 4-km using a 
gradient-inverse-distance-squared 
(GIDS) method

 •

 

Statistical transformation ensures 
that the climate model and    
historical data have similar     
statistical properties: the mean       
and standard deviation of the          
1950-2000 period were used                
for corrections

 •

 

Data is further downscaled to              
270-m using GIDS for model        
application
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Gradient Inverse Distance Squared (GIDS) 
approach to fine resolution downscaling
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For every month, for every grid cell, an equation is developed to downscale 
from 12-km to 4-km on the basis of: 
For every month, for every grid cell, an equation is developed to downscale 
from 12-km to 4-km on the basis of:

Z = climate variable of interest, precipitation or air temperature at 4-km grid cell
Zi = climate variable at 12-km grid cell i
X = easting
Y = northing
E = elevation
N = number of 12-km grid cells in the specified search radius
di = distance from 4-km site to 12-km cell (no less than 12-km, provides nugget)
Cx , Cy , Ce = regression coefficients for easting, northing, and elevation

Search radius of 27 km limits influence of distant data, allows for ~ 21 12-km 
cells to estimate each 4-km cell, weighted to the closest cell 
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Zi = climate variable at 12-km grid cell i
X = easting
Y = northing
E = elevation
N = number of 12-km grid cells in the specified search radius
di = distance from 4-km site to 12-km cell (no less than 12-km, provides nugget)
Cx , Cy , Ce = regression coefficients for easting, northing, and elevation

Search radius of 27 km limits influence of distant data, allows for ~ 21 12-km 
cells to estimate each 4-km cell, weighted to the closest cell

(Nalder and Wein, 1998)



Bias CorrectionBias Correction
• Climate model data represents trends or 

changes, not absolute values 
• Statistical transformation is necessary to ensure 

that the climate model and historical data have 
similar statistical properties 

• Measured baseline period, 1950-2000, is used 
for correction of climate data 

• Various approaches include
• Quantile mapping and adjustment of CDFs
• Statistical scaling

• annual averages or monthly averages: 
absolute difference for temperature, ratio 
for precipitation 

• monthly averages spatially explicit, using 
a correction factor for each grid cell and 
mean and standard deviation of the 
baseline period used for correction 
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Elevation 608 m4-km grid

270-m grid at 
station location  
Elevation 366 m

4-km grid

Station Elevation 354 m

Hopland FS CIMIS Station
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4-km = 0.9636x + 0.9067
R² = 0.866

270-m = 0.95x + 1.0282
R² = 0.8729
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PRISM
PRISM 

downscaled to 
270-m

Number of 
stationsMeasured 4-km

Precipitation mean 38.1 35.8 35.7 195

(mm/month) std dev 23.8 22.4 22.2

Minimum Air Temperature mean 8.2 8.8 8.8 183

(degrees C) std dev 3.5 3.7 3.6

Maximum Air Temperature mean 23.2 23.5 23.5 185

(degrees C) std dev 3.5 3.7 3.6

Means and standard deviationsMeans and standard deviations

measured climate parametersmeasured climate parameters
PRISM climate parameters for 4PRISM climate parameters for 4--km cellskm cells
PRISM climate parameters for 270PRISM climate parameters for 270--m cellsm cells



Downscaling ConclusionsDownscaling Conclusions

•
 

Constructed analogues technique 
provides a rigorous approach to 
downscaling GCM data to regional 
scales

 •
 

GIDS approach to downscaling 
climate parameters to a fine 
resolution generally maintains or 
improves accuracy by incorporating 
deterministic features represented 
by topographic relief
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Hydrologic ModelingHydrologic ModelingHydrologic Modeling
••

 

Basin Characterization Model (BCM)Basin Characterization Model (BCM)
––

 

run in FORTRANrun in FORTRAN
––

 

uses griduses grid--based databased data
––

 

calculates incalculates in--place recharge or generated runoffplace recharge or generated runoff

••

 

Potential Potential evapotranspirationevapotranspiration

 

(Priestley(Priestley--Taylor)Taylor)
––

 

hourly solar radiation modeled using topographic hourly solar radiation modeled using topographic 
shading and cloudinessshading and cloudiness

––

 

vegetation densityvegetation density
••

 

Snow accumulation and melt based on NWS Snow accumulation and melt based on NWS 
SnowSnow--17 Model17 Model

••

 

Soils (STATSGO/SSURGO): hydraulic Soils (STATSGO/SSURGO): hydraulic 
properties and depth determine soil storageproperties and depth determine soil storage

••

 

Geology is used to estimate bedrock Geology is used to estimate bedrock 
permeabilitypermeability

••

 

Precipitation and air temperature is available Precipitation and air temperature is available 
using PRISM datasets or future projectionsusing PRISM datasets or future projections
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Climatic Water Deficit in South BayClimatic Water Deficit in South Bay Google Maps Image of South BayGoogle Maps Image of South Bay
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North Bay Vegetation TypesNorth Bay Vegetation Types
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Climatic Water Deficit and Climate ChangeClimatic Water Deficit and Climate Change
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19711971--20002000
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SummarySummary
•

 

GCM output needs to be downscaled for 
intended application

 –

 

Scale of resolution
•

 

Regional or local processes
•

 

Translation through hydrology models provide 
impacts of the interrelated processes

 •

 

Constructed analogues and GIDS 
approaches provide rigor as well as options 
for analysis at multiple scales

 •

 

Application of climate projections at fine 
scales

 –

 

Provides simulations of environmental conditions 
that occur at the hillslope

 

scale

 –

 

Reflects energy loading processes and changes in 
soil conditions

 –

 

Correlate to the distribution of vegetation types
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