CALIFORNIA DEPARTMENT OF FISH AND GAME STREAM INVENTORY REPORT

Big Austin Creek Report Revised April 14, 2006 Report Completed 2000 Assessment Completed 1995

INTRODUCTION

Stream inventories were conducted during the summers of 1995 and 1996 on Big Austin Creek. The inventories were conducted in two parts: habitat inventory and biological inventory. The objective of the habitat inventory was to document the amount and condition of available habitat to fish, and other aquatic species with an emphasis on anadromous salmonids in Big Austin Creek. The objective of the biological inventory was to document the salmonid and other aquatic species present and their distribution.

The objective of this report is to document the current habitat conditions, and recommend options for the potential enhancement of habitat for Chinook salmon, coho salmon and steelhead trout. Recommendations for habitat improvement activities are based upon target habitat values suitable for salmonids in California's north coast streams.

WATERSHED OVERVIEW

Big Austin Creek is a tributary of the Russian River, located in Sonoma County, California (see Big Austin Creek map, page 2). The legal description at the confluence with the Russian River is T7N, R11W. Its location is 38°27'58" N. latitude and 123°2'57" W. longitude. Year round vehicle access exists from Austin Creek Road via Highway 116 near Cazadero. The upper road was only accessible through private locked gates.

Big Austin Creek and its tributaries drain a basin of approximately 68.7 square miles. Big Austin Creek is a fourth order stream and has approximately 13 miles of blue line stream, according to the USGS Guerneville, Duncans Mills, Fort Ross, and Cazadero 7.5 minute quadrangles. Major tributaries including East Austin Creek and Ward Creek are described in separate stream reports. Elevations range from about 20 feet at the mouth of the creek to 2,111 feet in the headwaters. Coniferous forest dominates the watershed, but there are zones of grassland and oak-woodland in the upper areas. The watershed is primarily privately owned, except for a portion in Austin Creek State Recreation Area. Major land uses include timber production, quarry mining (historical), gravel mining and urban development. Historically many residences were only occupied seasonally, today most are year-round.

METHODS

The habitat inventory conducted in Big Austin Creek follows the methodology presented in the <u>California Salmonid Stream Habitat</u> <u>Restoration Manual</u> (Flosi et al. 1998). The Neap crew that conducted the inventory were trained in standardized habitat inventory methods by the California Department of Fish and Game (DFG). This inventory was conducted by a two person team and was supervised by Bob Coey, Russian River Basin Planner (DFG).

HABITAT INVENTORY COMPONENTS

A standardized habitat inventory form has been developed for use in California stream surveys and can be found in the <u>California</u> <u>Salmonid Stream Habitat Restoration Manual</u>. This form was used in Big Austin Creek to record measurements and observations. There are nine components to the inventory form: flow, channel type, temperatures, habitat type, embeddedness, shelter rating, substrate composition, canopy, and bank composition.

1. Flow:

Flow is measured in cubic feet per second (cfs) at the bottom of the stream survey reach using standard flow measuring equipment, if available. In some cases flows are estimated. Flows were also measured or estimated at major tributary confluences.

2. Channel Type:

Channel typing is conducted according to the classification system developed and revised by David Rosgen (1985 rev. 1994). This methodology is described in the <u>California Salmonid Stream Habitat</u> <u>Restoration Manual</u>. Channel typing is conducted simultaneously with habitat typing and follows a standard form to record measurements and observations. There are five measured parameters used to determine channel type: 1) water slope gradient, 2) entrenchment, 3) width/depth ratio, 4) substrate composition, and 5) sinuosity.

3. Temperatures:

Water and air temperatures, and time, are measured by crew members with hand held thermometers and recorded at each tenth unit typed. Temperatures are measured in Fahrenheit at the middle of the habitat unit and within one foot of the water surface.

4. Habitat Type:

Habitat typing uses the 24 habitat classification types defined by McCain and others (1988). Habitat units are numbered sequentially and assigned a type identification number selected from a standard list of 24 habitat types. Dewatered units are labeled "DRY". Big Austin Creek habitat typing used standard basin level measurement criteria. These parameters require that the minimum length of a described habitat unit must be equal to or greater than the stream's mean wetted width. All unit lengths were measured, additionally, the first occurrence of each unit type and a randomly selected 10% subset of all units were completely sampled (length, mean width, mean depth, maximum depth and pool tail crest depth). All measurements were in feet to the nearest tenth.

5. Embeddedness:

The depth of embeddedness of the cobbles in pool tail-out reaches is measured by the percent of the cobble that is surrounded or buried by fine sediment. In Big Austin Creek, embeddedness was visually estimated. The values were recorded using the following ranges: 0 - 25% (value 1), 26 - 50% (value 2), 51 - 75% (value 3), 76 - 100% (value 4). Additionally, a rating of "not suitable" (NS) was assigned to tail-outs deemed unsuited for spawning due to inappropriate substrate particle size, having a bedrock tail-out, or other considerations.

6. Shelter Rating:

Instream shelter is composed of those elements within a stream channel that provide salmonids protection from predation, reduce water velocities so fish can rest and conserve energy, and allow separation of territorial units to reduce density related competition. Using an overhead view, a quantitative estimate of the percentage of the habitat unit covered is made. All shelter is then classified according to a list of nine shelter types. In Big Austin Creek, a standard qualitative shelter value of 0 (none), 1 (low), 2 (medium), or 3 (high) was assigned according to the complexity of the shelter. The shelter rating is calculated for each habitat unit by multiplying shelter value and percent covered. Thus, shelter ratings can range from 0-300, and are expressed as mean values by habitat types within a stream.

7. Substrate Composition:

Substrate composition ranges from silt/clay sized particles to boulders and bedrock elements. In all fully measured habitat units, dominant and sub-dominant substrate elements were visually estimated using a list of seven size classes.

8. Canopy:

Stream canopy density was estimated using modified handheld spherical densiometers as described in the <u>California Salmonid</u> <u>Stream Habitat Restoration Manual</u>, 1998. Canopy density relates to the amount of stream shaded from the sun. In Big Austin Creek, an estimate of the percentage of the habitat unit covered by canopy was made from the center of approximately every third unit in addition to every fully-described unit, giving an approximate 30% sub-sample. In addition, the area of canopy was estimated visually into percentages of evergreen or deciduous trees.

9. Bank Composition:

Bank composition elements range from bedrock to bare soil. However, the stream banks are usually covered with grass, brush, or trees. These factors influence the ability of stream banks to withstand winter flows. In Big Austin Creek, the dominant composition type and the dominant vegetation type of both the right and left banks for each fully measured unit were selected from the habitat inventory form. Additionally, the percent of each bank covered by vegetation was estimated and recorded.

BIOLOGICAL INVENTORY

Biological sampling during stream inventory is used to determine fish species and their distribution in the stream. Biological inventory is conducted using one or more of three basic methods: 1) stream bank observation, 2) underwater observation, 3) electrofishing. These sampling techniques are discussed in the California Salmonid Stream Habitat Restoration Manual.

DATA ANALYSIS

Data from the habitat inventory form are entered into <u>Habitat</u>, a dBASE IV data entry program developed by Tim Curtis, Inland Fisheries Division, California Department of Fish and Game. This program processes and summarizes the data, and produces the following tables and appendices:

- Riffle, flatwater, and pool habitat types
- Habitat types and measured parameters
- Pool types
- Maximum pool depths by habitat types
- Shelter by habitat types
- Dominant substrates by habitat types

- Vegetative cover and dominant bank composition
- Fish habitat elements by stream reach

Graphics are produced from the tables using Lotus 1,2,3. Graphics developed for Big Austin Creek include:

- Level II Habitat Types by % Occurrence and % Total Length
- Level IV Habitat Types by % Occurrence
- Pool Habitat Types by % Occurrence
- Maximum Depth in Pools
- Pool Shelter Types by % Area
- Substrate Composition in Low Gradient Riffles
- Percent Cobble Embeddedness by Reach
- Mean Percent Canopy
- Mean Percent Canopy by Reach
- Percent Bank Composition and Bank Vegetation

HISTORICAL STREAM SURVEYS:

The Department of Fish and Game conducted two partial surveys of Big Austin Creek in 1977. The partial survey from the mouth to Ward Creek was conducted in April 1977 and the partial survey from Ward Creek to the headwaters was conducted in July 1977. In addition, biological inventories were conducted in June 1954, August 1956, and October 1968. A brief summary of each survey follows. In the 1977 survey, between Highway 116 and the mouth, the stream was intermittent. Fifty yards south of Ward Creek, a flow of 1.6 cfs was measured with a pygmy meter. Seventy yards upstream of Ward Creek, the flow was estimated to be 2.6 cfs. A 1 mile section near Red Slide Creek and a 1 mile section in the headwaters were intermittent. The wetted width ranged from 3" to 40' below Ward Creek and less than 1' to approximately 60' in areas with seasonal dams above Ward Creek. The depth ranged from less than 1" to 4' below Ward Creek and less than 1" to approximately 15' above Ward Creek.

Above Ward Creek, natural pools were most common in the upper 2 miles and artificial dammed pools occurred in the lower 3 miles. Shelter was provided by undercut banks and boulders. Below Ward Creek, pools were most common in the lower half of the survey. Shelter was provided by terrestrial vegetation, aquatic vegetation and deep pools.

Below Ward Creek, the substrate was 60% gravel, 15% small cobble and 25% sand. Forty-one steelhead redds and three lamprey redds were observed. Between Ward Creek and Red Slide Creek, the substrate consisted of 10% boulders, 30% cobble, 50% gravel, 5% sand, and 5% organic debris/silt with many areas containing usable spawning gravel. One mile upstream of Red Slide Creek, the substrate was predominantly gravel. In the headwaters, the streambed was approximately 60% boulders, 35% cobble and 5% gravel with few areas available for spawning.

Partial barriers below Ward Creek included a temporary road crossing with a 36" culvert below the town of Cazadero, streambed alterations in an area opposite a gravel plant located north of the old Austin Creek Bridge, and remnants of some of the summer dams. Above Ward Creek, the only barriers were those created by gravel dams located downstream of the Arroyo Gun Club.

No pollution was observed, although septic tank leakage from homes along the creek was suspected. Two diversions were noted. Water Temperatures ranged from $53-73^{\circ}F$ and air temperatures ranged from $56-84^{\circ}F$.

HABITAT INVENTORY RESULTS

 \ast all tables and graphs are located at the end of the report \ast

Habitat inventories of Big Austin Creek were conducted on August 8-31, 1995 and September 16-25, 1996. The 1995 inventory was conducted by Pamela Higgins, Kurt Gregory, and Julie Maggi (AmeriCorps). The 1996 inventory was conducted by Nancy and Bob The data for both years was combined into one Barney (NEAP). database and analyzed by Ken Bunzel (DFG). The stream was not inventoried from its mouth to the confluence with Ward Creek, because of its large size. The 1996 survey began at the confluence with Ward Creek and ended at the confluence with Bearpen Creek. The 1995 survey began at the confluence with Bearpen Creek, and extended to a point 500 feet past the end of anadromous fish passage at a 14 foot waterfall. The total length of the stream surveyed was 47,300 feet, with an additional 2,257 feet of side channel.

On July 21, 1995 summer flows were measured as approximately 2.45 cfs just above the confluence of Bearpen Creek and 5.72 cfs at the crossing of Old Cazadero Road and Cazadero Highway. On September 7, 1995 flows were measured as 0.984 near the confluence of Bearpen Creek, below the bridge. On May 25, 1996 flows were measured as 16.59 cfs at 150 yards north of the confluence with Ward Creek.

This section of Big Austin Creek has seven channel types in nine separate reaches: from the mouth to 18,874 feet an F3; next 1,563 feet an F2; next 2,220 feet an F3; next 3,523 feet an F4; next

3,403 feet a D4; next 6,257 feet a D3; next 1,153 feet an F3; next 4,536 feet an F1 and the upper 5,772 feet a B1.

F1 channel types are entrenched meandering riffle/pool channels on low gradients (<2%) with a high width/depth ratio and a predominantly bedrock substrate. F2, F3 and F4 channels are similar with boulder, cobble and gravel substrates, respectively.

B1 channel types are moderately entrenched, moderate gradient (2-4%), riffle dominated channels, with infrequently spaced pools, a very stable plan and profile, stable banks and have a predominantly bedrock substrate.

D3 channel types are multiple channels with longitudinal and transverse bars. They have a very wide low gradient (<2%) channel with eroding banks and a predominantly cobble substrate. D4 channels are similar except with a gravel substrate.

The un-surveyed section from the mouth to the confluence with Ward Creek can generally be described as a D4 channel type. It is characterized by long riffle/flatwater units with intermittent flow with few pools, except bedrock or boulder outcroppings and little shelter except where terrestrial vegetation exists.

Water temperatures ranged from $59-76^{\circ}F$. Air temperatures ranged from $54-91^{\circ}F$.

Table 1 summarizes the Level II riffle, flatwater, and pool habitat types. Based on frequency of **occurrence** there were 44% pool units, 29% flatwater units, and 27% riffle units. Based on total **length** there were 36% pool units, 36% flatwater units, and 28% riffle units (Graph 1).

Eight hundred, ten habitat units were measured and 13% were completely sampled. Twenty-four Level IV habitat types were identified. The data is summarized in Table 2. The most frequent habitat types by percent **occurrence** were low gradient riffles at 21%, runs 11%, and bedrock scour pools 9% (Graph 2). By percent total **length**, low gradient riffles made up 24%, runs 14%, and glides 9%.

Three hundred, fifty-nine pools were identified (Table 3). Scour pools were most often encountered at 54%, and comprised 48% of the total length of pools (Graph 3).

Table 4 is a summary of maximum pool depths by pool habitat types. Pool quality for salmonids increases with depth. Eighty-three of the 359 pools (23%) had a depth of three feet or greater (Graph 4). These deeper pools comprised 12% of the total length of stream habitat.

A shelter rating was calculated for each habitat unit and expressed as a mean value for each habitat type within the survey using a scale of 0-300. Riffle types had the highest shelter rating at 28. Flatwater had the lowest rating with 17 and pools rated 20 (Table 1). Of the pool types, scour pools rated 24, backwater pools 21, and main channel pools 15 (Table 3).

Table 5 summarizes fish shelter by habitat type. By percent area, the dominant pool shelter types were boulders at 53%, bedrock ledges at 21%, and root masses at 10%. Graph 5 describes the pool shelter in Big Austin Creek.

Table 6 summarizes the dominant substrate by habitat type. Gravel was the dominant substrate observed in seven of the fifteen low gradient riffles measured. Small cobble was dominant in four of the low gradient riffles (Graph 6).

The depth of cobble embeddedness was estimated at pool tail-outs. Of the 352 pool tail-outs measured, 73 had a value of 1 (21%); 79 had a value of 2 (22%); 93 had a value of 3 (26%); and 107 had a value of 4 (30%). On this scale, a value of one is best for fisheries. Graph 7 describes percent embeddedness by reach.

The mean percent canopy density for the stream reach surveyed was 51%. The mean percentages of deciduous and evergreen trees were 36% and 64%, respectively. Graph 8 describes the canopy for the entire survey and graph 9 describes the canopy by reach.

For the entire stream reach surveyed, the mean percent right bank vegetated was 61% and the mean percent left bank vegetated was 63%. For the habitat units measured, the dominant vegetation types for the stream banks were: 48% evergreen trees, 30% deciduous trees, 8% brush, 7% bare soil and 6% grass. The dominant substrate for the stream banks were: 33% cobble/gravel, 28% silt/clay/sand, 20% bedrock and 19% boulder (Graph 10).

HABITAT INVENTORY RESULTS FOR UNNAMED TRIBUTARY

The habitat inventory of August 25-31, 1995 was conducted by Pamela Higgins and Kurt Gregory (Americorps) and data analyzed by Ken Bunzel (DFG). The survey began at the confluence with Big Austin Creek and ended 2,970 feet upstream were fish were no longer observed.

The surveyed section of this tributary is an F1 channel type. These channel types are entrenched meandering riffle/pool channels on low gradients (<2%) with a high width/depth ratio and a predominantly bedrock substrate.

Water temperatures ranged from 68° -72°F. Air temperatures ranged from 73-81°F. Based on total **length** there were 38% pool units, 33% flatwater units, and 29% riffle units. Forty-five habitat units were measured and 7% were completely sampled. By percent total **length**, high gradient riffles made up 28%, step pools 28%, step runs 25%, and runs 8%.

Twenty-four pools were identified. Main Channel pools were most often encountered at 54%, and comprised 80% of the total length of pools. Half of the pools had a depth of two feet or greater. These deeper pools comprised 18% of the total length of stream habitat. Pool types in general had a mean shelter rating at 21, with shelter consisting of 78% boulders and 22% bedrock ledges.

The mean percent canopy density for the stream reach surveyed was 36%. The mean percentages of deciduous and evergreen trees were 10% and 90%, respectively. Both right and left banks were 100% vegetated, with vegetation consisting of 83% evergreen trees and 17% brush. The stream banks were 83% bedrock and 17% cobble/gravel.

BIOLOGICAL INVENTORY

JUVENILE SURVEYS:

In July 1954, two sites were electroshocked using a 230 volt D.C. shocker. The first site was located 3 miles above the mouth at the Dic-A-Dero Rancho Resort. The water temperature was 65°F and the air temperature was 73°F. The flow was estimated at approximately 5 cfs. For 200 feet in pools and riffles 21 0+ and six 1+ steelhead were observed along with 1 juvenile Coho Salmon, 10 California Roach, 9 Sacramento Suckers, 1 Threespine Stickleback, 1 Sacramento Pikeminnow and 12 sculpin (Cottus Sp.). In addition, lamprey ammocoetes and crayfish were abundant.

The second site was located .5 miles above Austin Creek School. For 200 feet in pools and riffles 341 0+, 27 1+, and two 2+ steelhead were observed. Both of the 2+ steelhead had been feeding almost exclusively on caddis fly larvae. In addition, 56 California Roach, 5 Sacramento Suckers, and 2 sculpin were observed. No crayfish or lamprey were found at this site. In August 1956, two sites were electroshocked for evaluation of the Russian River rough fish control project. The first site, located just above the mouth of Bearpen Creek, was nearly dry. A 4' deep pool still existed at the base of a large rock. Only 4 large Sacramento Suckers 10-11" long were seen.

The second site was located near the lower end of Ohmens Resort Campground. The water was fairly low in this area, with a flow of less than 0.5 cfs, which was lower than observed in previous years at this time. Three 0+ steelhead, 5 Sacramento Suckers and 1 Sacramento Pikeminnow were observed.

In 1968, nineteen tributaries of the Russian River were checked for the presence of Juvenile coho Salmon. Capture and identification was done by the use of a brail net. No coho were found in Austin Creek, although it was noted that a period of low rainfall occurred during the previous spawning season. Species present during this survey included steelhead, California Roach, large (adult) Sacramento Pikeminnow and Sacramento Suckers.

In the April 1977 survey below Ward Creek, young of the year Steelhead and California Roach were abundant, averaging 100/100' for each species. In addition, 13 adult steelhead, numerous Threespine Sticklebacks, 10 Sacramento Suckers, and 5 Sacramento Pikeminnow were observed.

In the July 1977 survey above Ward Creek, Young of the year steelhead were observed at 15-25/100' upstream to the Ohmen Resort area. It was noted that low winter flows during the past two years had probably limited both the range and number of steelhead in the stream. California Roach were observed up to Laton Mine in the headwaters and were the most abundant species found in this section. Approximately 80 Sacramento Suckers ranging in size from 3-10" were observed from 0.1 miles downstream of the headwaters to Ward Creek, with many observed in the pools downstream of Red Slide Creek. Three sculpin (Cottus sp.) were observed approximately 0.75 miles downstream of the headwaters.

On September 7, 1995 a biological inventory was conducted in four sites of Big Austin Creek to document fish species composition and distribution. Each site was single pass electrofished using one Smith Root Model 12 electrofisher. Fish from each site were counted by species, and returned to the stream. The air temperature ranged from 86-88°F and the water temperature ranged from 68-73°F. The observers were Higgins and Gregory (AmeriCorps).

The inventory of Reach 4 started in habitat unit 28 and ended 394

feet upstream in habitat unit 45. In two lateral scour pools 28 0+ and 4 1+ steelhead (8/100') and 1 coho were observed along with 10 California Roach, 1 sculpin (Cottus sp.) and 1 Threespine Stickleback.

The inventory of Reach 7 started in habitat unit 262 and ended 233 feet upstream in habitat unit 268. In two lateral scour pools 30 0+ and 7 1+ steelhead (18/100') were observed along with 14 California Roach and 6 sculpin. Five 0+ steelhead were also observed in a run habitat type.

The inventory of Reach 8 started in habitat unit 348 and ended 620 feet upstream in habitat unit 356. In pool and run habitat types 39 0+ and 2 1+ steelhead (7/100') were observed along with 18 sculpin, 7 California Roach and 3 unidentified salamanders.

The inventory of Reach 9 started in habitat unit 462 and ended 330 feet upstream in habitat unit 470. Eight 0+ steelhead (2/100') were observed in pool habitats and one California Roach and six sculpin were observed in pool, run and riffle habitats.

A summary	of	historical	and	recent	data	collected	appears	in	the
table belo	w.								

Species Observed in Historical and Recent Surveys					
YEARS	SPECIES	SOURCE	Native/Introduced		
1954, 1956, 1968, 1977, 1995	Steelhead Trout	DFG	Ν		
1954, 1995	Coho Salmon	DFG	N		
1954, 1956, 1968, 1977	Sacramento Pikeminnow	DFG	Ν		
1954, 1956, 1968, 1977	Sacramento Sucker	DFG	Ν		
1954, 1968, 1977, 1995	California Roach	DFG	Ν		
1954, 1977, 1995	Sculpin	DFG	N		
1954, 1977, 1995	Threespine Stickleback	DFG	Ν		
1954	Lamprey Ammocoetes	DFG	Ν		

No intro	duce	d fi	sh spe	cies	were	found	in	any	of	the	surveys.	The
followin	ng ta	ble	summa	rizes	fish	hatcl	nery	/ st	ock	ing,	transfers	or
rescues	for 2	Big	Austin	Cree	ek.							

Summa	Summary of hatchery stocking, transfers or rescues						
YEAR	SPECIES	SOURCE	#	SIZE			
1956	SH	AUSTIN CREEK*	4335	FING			
1957	SH	AUSTIN CREEK*	18069	FING			
1958	SH	AUSTIN CREEK*	15824	FING			
1958	SH	DUTCH BILL CREEK*	6694	FING			
1959	SH	AUSTIN CREEK*	7718	FING			
1959	SH	BEAR PEN*	5625	FING			
1959	SH	DUTCH BILL CREEK*	41494	FING			
1959	SH	HULBERT CREEK*	5000	FING			
1960	SH	AUSTIN CREEK*	21423	FING			
1960	SH	BEAR PEN CREEK*	12791	FING			
1960	SH	DUTCH BILL CREEK*	7690	FING			
1961	SH	AUSTIN CREEK*	24926	FING			
1961	SH	BEAR PEN CREEK*	12680	FING			
1961	SH	DUTCH BILL CREEK*	18527	FING			
1962	SH	AUSTIN CREEK*	21448	FING			
1962	SH	BEAR PEN CREEK*	18906	FING			
1962	SH	DUTCH BILL CREEK*	5651	FING			
1963	SH	AUSTIN CREEK*	13440	FING			
1963	SH	BEAR PEN CREEK*	2120	FING			
1963	SH	DUTCH BILL CREEK*	2624	FING			
1964	SH	AUSTIN CREEK*	131007	FING			
1964	SH	BEAR PEN CREEK*	7787	FING			

Summa	Summary of hatchery stocking, transfers or rescues						
1964	SH	DUTCH BILL CREEK*	13520	FING			
1965	SH	AUSTIN CREEK*	8656	FING			
1966	SH	AUSTIN CREEK*	63970	FING			
1966	SH	BEAR PEN CREEK*	11400	FING			
1967	SH	AUSTIN CREEK*	15717	FING			
1967	SH	BEAR PEN CREEK*	2088	FING			
1967	SH	SONOMA CREEK*	5556	FING			
1968	SH	AUSTIN CREEK*	86499	FING			
1968	SS	DUTCH BILL CREEK*	30032	FING			
1969	SH	AUSTIN CREEK*	27100	FING			
1969	SS	DARRAH Hatchery t	10000	YEAR			
1969	SS	DUTCH BILL CREEK*	29684	FING			
1969	SH	RUSSIAN RIVER*	2460	FING			
1970	SH	AUSTIN CREEK*	56436	FING			
1970	SH	BEAR PEN CREEK*	4305	FING			
1970	SS	DARRAH Hatchery t	15015	YEAR			
1970	SS	DUTCH BILL CREEK*	4277	FING			
1972	SH	AUSTIN CREEK*	5965	FING			
1978	SS	GARCIA POND #1 t	4455	YEAR			
1978	SS	GARCIA POND #2 t	3965	YEAR			
1983	SH	WARM SPRINGS HATCHERY	24800	FING			
1984	SH	WARM SPRINGS HATCHERY	13770	FING			
1986	SH	WARM SPRINGS HATCHERY	13500	FING			

SH = steelhead

SS = coho (silver) salmon
* = rescue actively
t = transfer

DISCUSSION

Big Austin Creek has seven channel types: F3, F2, F4, D4, D3, F1, and B1. There are 22,247 feet of F3 channel type in Reaches 1, 3 and 7. According to the DFG <u>Salmonid Stream Habitat Restoration</u> <u>Manual</u>, F3 channel types are good for bank-placed boulders as well as single and opposing wing-deflectors. They are fair for lowstage weirs, boulder clusters, channel constrictors and log cover.

There are 1563 feet of F2 channel type in Reach 2. These channel types are fair for low-stage weirs, single and opposing wing-deflectors and log cover.

There are 3523 feet of F4 channel type in Reach 4. These channel types are good for bank-placed boulders and fair for low-stage weirs, single and opposing wing-deflectors, channel constrictors and log cover.

There are 3403 feet of D4 channel type in Reach 5. D4 channel types are fair for bank-placed boulders, single and opposing wing-deflectors and channel constrictors.

There are 6257 feet of D3 channel type in Reach 6. D3 channel types are fair for bank-placed boulders, single and opposing wing-deflectors and channel constrictors. They are poor for low and medium-stage weirs, boulder clusters and log cover.

There are 4536 feet of F1 channel type in Reach 8. These channel types are good for bank-placed boulders and fair for single wing-deflectors and log cover.

There are 5772 feet of B1 channel type in Reach 9. These channel types are excellent for bank-placed boulders and bank cover and good for log cover.

Any work considered in the D channel type areas must take into consideration the meandering stream channel created by the low gradient and excess gravel supply from the headwaters. Bioengineering erosion control techniques could be suitable in some areas to decrease channel width thereby increasing riparian and sediment scour.

The F and B channel types have suitable gradients and the stable stream banks that are necessary for the installation of instream

structures designed to increase pool habitat, trap spawning gravels, and provide protective shelter for fish. However, any work considered will require careful design, placement, and construction, due to high stream energies, and must include protection for any unstable banks.

The water temperatures recorded on the survey days August 8-31, 1995 and September 16-25, 1996 ranged from 59-76°F. Air temperatures ranged from 54-91°F. Water temperatures above the threshold stress level (65°F) for salmonids were recorded in all reaches. To make any further conclusions, temperatures need to be monitored for a longer period of time through the critical summer months, and more extensive biological sampling conducted.

Pools comprised 36% of the total **length** of this survey. In third and fourth order streams a primary pool is defined to have a maximum depth of at least three feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel width. In Big Austin Creek, the pools are relatively shallow with only 23% having a maximum depth of at least 3 feet. These pools comprised 12% of the total length of stream habitat. Landowners indicate historically Austin Creek had many large deep pools. These pools have now filled with gravel due to historic quarry mining activities, sedimentation from road building, urban development and a recent major fire. Seasonal dams built may have also led to instream erosion through bank saturation and slumping.

The mean shelter rating for pools was 20. However, a pool shelter rating of approximately 80 is desirable. The relatively small amount of pool shelter that now exists is being provided primarily by boulders and bedrock ledges. Log and root wad cover in the pool and flatwater habitats would improve both summer and winter salmonid habitat. Landowners indicate that many large logs have been removed from the channel over time for lumber, firewood and to reduce the threat of erosion and flooding. However, this practice has lead to diminished fish habitat quality and likely increased stream velocities leading to increased erosion and flooding in downstream areas. Log cover provides rearing fry with protection from predation, rest from water velocity, and also divides territorial units to reduce density related competition.

Seventy-three percent of the low gradient riffles measured had either gravel or small cobble as the dominant substrate. This is generally considered good for spawning salmonids. Fifty-seven percent of the pool tail-outs measured had embeddedness ratings of either 3 or 4. Only 21% had a rating of 1. Cobble embeddedness measured to be 25% or less, a rating of 1, is considered best for the needs of salmon and steelhead. In a reach comparison, Reaches 1-5, and 7 had fair ratings while Reaches 6, 8 and 9 had poor ratings.

The higher the percent of fine sediment, the lower the probability that eggs will survive to hatch. This is due to the reduced quantity of oxygenated water able to percolate through the gravel, or because of fine sediment capping the redd and preventing fry emergence. In Reaches 6-9, stream bank erosion adjacent to road areas is prevalent. These sediment sources should be mapped and rated according to their potential sediment yields, and control measures taken.

The mean percent canopy for the survey was only 51%. Although 80 percent is generally considered desirable, canopy could only be improved in this wide alluvial stream with large native conifers. Cooler water temperatures are desirable in Big Austin Creek. Elevated water temperatures could be reduced by increasing stream canopy, particularly in the lower un-surveyed areas. The large trees required for adequate stream canopy would also eventually provide a long term source of large woody debris needed for instream structure and bank stability.

The headwater area of Big Austin Creek is geologically made up of highly erodible materials. This natural instability has been exacerbated by historic mining activities and a more recent devastating fire. Although much of the quarry mining activity has healed over, the effects of the fire in reducing riparian vegetation are still evident, and several large landslides exist which will be active for some time.

DISCUSSION FOR UNNAMED TRIBUTARY

There are 2970 feet of F1 channel type in this tributary. These channel types are good for bank-placed boulders and fair for single wing-deflectors and log cover.

The water temperatures were high $(68-72^{\circ}F)$ and the canopy density was very low (36°) in this creek. In addition, the amount and quality of pool shelter is inadequate. Large woody debris would increase pool habitat with protective shelter for juvenile salmonids. Increasing the shade canopy by planting native trees would keep water temperatures cool and provide a long term source of woody debris for instream structure and shelter.

Road related erosion is prevalent in some areas, particularly downstream in the un-surveyed section. Eleven diversions were noted in this section. Downstream where seasonal vacation residences have been converted to year round homes, water diversion is likely reducing flows.

SUMMARY

Biological surveys were conducted to document fish distribution and are not necessarily representative of population information. Steelhead were documented consistently during each past survey year and coho only in the 1954 and 1995 surveys. This is likely because physiological and environmental requirements for coho are more stringent than for steelhead, or coho were absent or present only in small numbers in some years. The survey documented few 0+ fish indicating unsuccessful spawning or poor rearing conditions. Fewer 1+ fish were noted indicating poor holding-over conditions in general.

In general, Big Austin Creek is inadequate for salmonid rearing habitat. Stream shade canopy is very low and water temperatures are high. The #'s and presence of species such as Sacramento Pikeminnow and Sacramento Suckers indicate temperature levels favor warm water species and are marginal for salmonids.

There are adequate quantities of spawning gravel throughout the surveyed section; however, Reaches 6-9 have high levels of fine sediment. The stream for its entire length is severely aggraded. This can be attributed mainly to the natural geologic instability of the region which has been exasperated by historic quarry mining and wildfire, road building and urban development. Relatively few pools of adequate depth exist for salmonid rearing habitat and there is a lack of large woody debris shelter. Downstream of the surveyed section, habitat for salmonids is almost nonexistent and largely serves as a migration corridor.

GENERAL RECOMMENDATIONS

Big Austin Creek should be managed as an anadromous, natural production stream.

The recent winter storms brought down many large trees and other woody debris into the stream, which increased the number and quality of pools since the drought years. This woody debris, if left undisturbed, will provide fish shelter and rearing habitat. Many signs of recent and historic tree and log removal were evident in the active channel during our survey. Efforts to increase flood protection or improve fish access in the short run, have led to long term problems in the system. Landowners should be sensitive about the natural and positive role woody debris plays in the system, and encouraged not to remove woody debris from the stream, except under extreme buildup and only under guidance by a fishery professional.

SPECIFIC FISHERY ENHANCEMENT RECOMMENDATIONS

- 1) Numerous roads with inadequate erosion protection were observed in the headwaters of Big Austin Creek. Active and potential sediment sources related to the road system need to be mapped, and treated according to their potential for sediment yield to the stream and its tributaries.
- 2) A geological/hydrological assessment of the headwater area, and adjoining historic mine should be conducted to develop a restoration plan for the aggraded channel. This should include a sediment-budget analysis and the possibility of increased gravel mining in the lower and uppermost reaches.
- 3) There is a bank culvert in habitat unit 114 (Reach 1) in need of maintenance. This culvert has rusted and is causing erosion. There are also major bank erosion problems in habitat units 232 (Reach 2, below Bearpen Creek), 204 and 210 (both Reach 6, above Bearpen Creek). These sites should be treated with bank stabilization structures and/or revegetation techniques to reduce the amount of fine sediment entering the stream.
- 4) Increase the canopy on Big Austin Creek by planting willow, alder, redwood, and Douglas fir along the stream where shade canopy is not at acceptable levels. In many cases, planting will need to be coordinated to follow bank stabilization or upslope erosion control projects.

PROBLEM SITES AND LANDMARKS - BIG AUSTIN CREEK SURVEY COMMENTS

The following landmarks and possible problem sites were noted. All distances are approximate and taken from the beginning of the survey reach.

	STREAM LEN (FT.	
01111	(,
1.00	48	START AT WARD CREEK
2.00	124	FEW FISH
15.00	957	MAN MADE DAM
16.00	1033	2" WATER INTAKE
17.00	1090	DRY TRIB LF BANK
23.00	1432	SM. MAN MADE ROCK DAM , NO FORM
25.00	1735	WELL CASING RT & LF BANKS
26.00	1841	SM. CULVERT LF BANK
27.00	2023	MAN MADE SM. ROCK DAM W/ VISQUENE
		45' X 2' X 25'
29.00	2290	SM. MANMADE ROCK DAM
31.00	2331	PUMP CASING LF BANK
36.00	2597	CONCRETE WALL CASING RT BANK
40.00	2805	FISH
44.00	2974	UNSTABLE RT BANK
46.00	3035	SUCKER FISH
69.00	4329	YELLOW-LEGGED FROGS
71.00	4499	FROGS
73.00	4594	CULVERT LF BANK
74.00	4732	DRY TRIB RT BANK
78.00	4988	CONCRETE CULVERT LF BANK 4'X4'X30'
		DOWN CUTTING SLIGHTLY. HAS A SILL.
		NO PROBLEMS
84.00	5634	DRY TRIB RT BANK
86.00	5902	SAW NUMEROUS 0+ FISH
90.10		
	6374	
		MAN MADE SM. ROCK DAM
96.00		FROGS
99.00		FROGS & FISH
103.00		BRIDGE 10.5'H X 13.5'W X 45'L
105.00		SM. CULVERT LF BANK 12X12 NO PROBLEMS
110.00		DRY TRIB RT BANK
114.00	8543	CULVERT
117.00	9087	DRY TRIB RT BANK
123.00		NUMEROUS FISH
125.00		TEMP. INSTREAM CULVERT DUE TO LOGGING
135.00		BRIDGE
138.00	11162	WELL CASING LF BANK

176.00 188.00	12972 14282 14908 15742	MAN MADE VERY LOW ROCK DAM PIC #14 TRIB RT BANK HOLMES CANYON DAMMED POOL FLASH BOARD MANY 0+ FISH MANY FISH UNSTABLE RT BANK
191.00	16073	PUMP CASING RT BANK
		1+, 2+ FISH
		MAN MADE DAM POOL; DRY TRIB LF BANK
		EROSION PROBLEM RT BANK
		SEVERAL 0+ FISH EROSION LF BANK
		UNSTABLE RT BANK
		UNSTABLE RT & LF BANKS
		SEVERAL 1+, ONE 2+
		50 - 70 0+ FISH THIS POOL
		UNSTABLE BANK BLOW OUT RT BANK
		IN BANK CULVERT RT BANK
		BEAR PEN CREEK RT BANK
		FISH PRESENT; ROACH?/STEELHEAD
43.00	22/20	SH/ROACH?
		MANY FISH CUT OFF FROM CHANNEL
		A FEW 1+ SH; MANY 0+ SH AND ROACH
		STEELHEAD OBSERVED
		EROSION LF BK
		DIRT CROSSING
		MANY FISH
		SUMMER CROSSING
		EROSION RT BK
		SUMMER CROSSING
137.00		
176.00	32000	TRIB LF BK STEEP, BOULDERS (61°F) MANY FISH (ROACH/SH)
189.00		DRY TRIB LF BK (LG. BOULDERS)
190.00		MANY 0+ SALMONIDS
194.00		WET TRIB LF BK (60°F)
195.00		EROSION OF FINE SEDIMENT ON RT BK BLOWOUT LF BK
204.00 206.00		OLD BLOWOUT/EROSION RT BK
208.00		NEW BLOWOUT, SMALLER RT BK
211.00		MASSIVE LOG ACCUMULATION
219.00		RESUMED TYPING OF BIG AUSTIN AT
219.00	34738	TRIB CONFLUENCE
236.00	34615	EROSION RT BK
		EROSION RI BR EROSION RT BK
239.00		TRIB OR GULLY (DRY) RT BANK
209.00	51/10	TINT ON GUILI (TINT) KI DANK

249.00	35436	BRIDGE XING
256.00	35710	SUMMER XING
260.00	35896	"GRAVELY SPRING" TRIB ON LF BK, TOP
		OF UNIT (63°F)
274.00	36397	E.F. SPOT/SNORKEL; 1+/2+? SALMONIDS
		DRY TRIB/GULLY LF BANK
302.00	37452	POSS. DRY TRIB ON RT BK, LARGE LOGS
304.00	37555	EROSION LF BK
307.00	37643	EROSION RT BK
335.00	38742	CULVERT FOR ROAD (6.5' X 16'L) RT BK,
		TRIB (66°F)
337.00	38806	LARGE 2+ SH
348.00	39138	SUMMER ROAD XING
367.00	40197	TRIB LF BK 61°F (FISH) 3'W, .5' AVG.
		DEPTH.
375.00	40487	EROSION RT BANK
		TRIB RT BK STEEP/NARROW 1'W, 66°F
387.00		1+/2+ FISH OBSERVED
395.00		EROSION/BLOWOUT RT BK
398.00	41200	TRIB RT BK (62°F) SHALLOW, AVG. DPTH .5, FISH PRESENT
400.00	41270	
402.00	41370	TRIB LF BK (64°F) STEEP/BOULDERS/VERY SHALLOW TRICKLE
426.00	12116	2" PIPE LF BK PUTTING TRICKLE INTO
420.00	42440	CREEK
427.00	42578	DRY TRIB LF BK
		TRIB LF BK (TRICKLE, VERY STEEP)
		SUMMER ROAD XING
		SUMMER XING
		SPRING LF BK
		LF BK SPRING
		TINY TRIB LF BK, STEEP, 63°F
		SPRING LF BK INTO POOL
		BEDROCK SUBSTRATE
		1+ OR 2+ SALMONID
		BEDROCK SUBSTRATE
		WHITE SUBSTANCE COVERING POOL
	10000	BOTTOM
499.00	45733	WHITE SUBSTANCE COVERING POOL
		BOTTOM (FISH OBSERVED, SP.?)
500.00	45770	ALL BEDROCK SUBSTRATE
		BEDROCK SHEET?
503.00	45879	CREEK BECOMING NARROW/SHALLOW
506.00	46226	DRY TRIB LF BK
510.00	46433	DRY ABOVE HERE SOME DISTANCE
512.00	46503	FISH OBSERVED

517.00	46837 2" METAL PIPE RT BK, LARGE VOLUME
	WATER COMING INTO CREEK
518.00	46868 14' FROM POOL SURFACE TO TOP OF PLUNGE.
	FISH PRESENT IN POOL
520.00	47026 TRIB RT BK (FORK, 71°F) ONLY A
	TRICKLE, VERY SHALLOW/STEEP/BOULDERS,
	VARIED BEDROCK SUBSTRATE
521.00	47336 NO FISH OBSERVED ABOVE UNIT #518
522.00	47367 CREEK GOES DRY HERE, NO FISH
	OBSERVED

PROBLEM SITES AND LANDMARKS - UNNAMED TRIBUTARY SURVEY COMMENTS

HABITAT UNIT #	STREAM LEN (FT.,	
18.00 22.00 25.00 30.00 33.00 35.00	1003 1134 1370 1522	FISH FRY OBSERVED 9' FROM POOL SURFACE TO TOP OF PLUNGE FISH PRESENT NO FISH NO FISH TRIB LF BK (STEEP/BEDROCK) FRY PRESENT 63°F
45.00	2973	ENDED SURVEY HERE. NEXT 1000' WAS VERY NARROW, BOULDER AND BEDROCK STEP RUN WITH SOME INFREQUENT SHALLOW POOLS. ONLY A COUPLE 1/2" FRY. WATER 73°F, ALMOST ZERO CANOPY. ROCKY/BEDROCK TERRAIN.

Big Austin Creek Channel Typing Reaches Reach 9 (B1) Reach 8 (F1) Reach 7 (F Slide C Reach (D3) Pan Great Reach 5 (D4) Reach 4 (F4) Reach 3 (F3) Reach 2 (F2) Reach 1 (F3)

Inland Fisheries Division Dept. of Fish and Game April 16, 1997

2 Big Austin Creek Tables Graphs Map Assessment Completed 1995 Page 1 of 20

2 Miles

Big Austin Creek

Mean	Mean	Mean	Mean	Mean
Percent	Percent	Percent	Right bank	Left Bank
Canopy 51,26	Evergreen 63.86	Decidous	% Cover 	% Cover

APPENDIX A. Summary of Mean Percent Vegetative Cover for Entire Stream

APPENDIX B.

Mean Percentage of Dominant Substrate

Dominant Class of Substrate	Number Units Right Bank	Number Units Left Bank	Total Mean Percent
Bedrock	25	37	20.26
Boulder	33	24	18.63
Cobble/Gravel	49	52	33.01
Silt/clay	46	40	28.10

Mean Percentage of Dominant Vegetation

Dominant Class of Vegetation	Number Units Right Bank	Number Units Left Bank	Total Mean Percent
Grass	5	13	5.88
Brush	14	12	8.50
Deciduous Trees	51	42	30.39
Evergreen Trees	74	74	48.37
No Vegetation	9	12	6.86

Big Austin Creek Tables Graphs Map Assessment Completed 1995 Page 2 of 20

APPENDIX C. FISH HABITAT INVENTORY DATA SUMMARY

STREAM NAME: Big Austin Creek SAMPLE DATES: 09/16/96 to 08/31/95 STREAM LENGTH: 47300 ft. LOCATION OF STREAM MOUTH: USGS Quad Map: Fort Ross Legal Description: T7NR11W

Latitude: 38°27'58" Longitude: 123°2'57"

SUMMARY OF FISH HABITAT ELEMENTS BY STREAM REACH

STREAM REACH 1 Channel Type: F3 Channel Length: 18874 ft. Riffle/Flatwater Mean Width: 16 ft. Total Pool Mean Depth: 1.4 ft. Base Flow: 0.0 cfs Water: 59 - 67 °F Air: 54 - 84 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 24% Dom. Bank Substrate: Cobble/Gravel Embeddness Value: 1. 64% 2. 13%

STREAM REACH 2 Channel Type: F2 Channel Length: 1563 ft. Riffle/Flatwater Mean Width: 18 ft. Total Pool Mean Depth: 1.3 ft. Base Flow: 0.0 cfs Water: 63 - 66 °F Air: 67 - 79 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 12% Dom. Bank Substrate: Cobble/Gravel Embeddness Value: 1. 83% 2. 0% 3. 0%

STREAM REACH 3 Channel Type: F3 Channel Length: 2220 ft. Riffle/Flatwater Mean Width: 31 ft. Total Pool Mean Depth: 1.3 ft. Base Flow: 0.0 cfs Water: 65 - 67 °F Air: 70 - 75 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 25% Dom. Bank Substrate: Cobble/Gravel Embeddness Value: 1. 86% 2. 14%

STREAM REACH 4 Channel Type: F4 Channel Length: 3523 ft. Riffle/Flatwater Mean Width: 13 ft. Total Pool Mean Depth: 0.9 ft. Base Flow: 0.0 cfs Water: 66 - 72 °F Air: 64 - 87 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 79Big Austin Creek Tables Graphselvlap of LOD: 57% Dom. Bank Substrate: CoAssessmenteCompleted 1995nnel: 20 ft. Embeddness Value: 1. 31% 2. Page 3 of 2022% 4. 19%

Canopy Density: 55% Evergreen Component: 65% Deciduous Component: 35% Pools by Stream Length: 30% Pools >=3 ft. deep: 49% Mean Pool Shelter Rtn: 27 Dom. Shelter: Boulders Occurrence of LOD: 13% Dry Channel: 0 ft. 3. 14% 4.9%

Canopy Density: 36% Evergreen Component: 56% Deciduous Component: 44% Pools by Stream Length: 21% Pools >=3 ft. deep: 38% Mean Pool Shelter Rtn: 35 Dom. Shelter: Boulders Occurrence of LOD: 7% Dry Channel: 0 ft. 4. 17%

Canopy Density: 61% Evergreen Component: 61% Deciduous Component: 39% Pools by Stream Length: 12% Pools >=3 ft. deep: 17% Mean Pool Shelter Rtn: 41 Dom. Shelter: Boulders Occurrence of LOD: 40% Dry Channel: 0 ft. 3.0% 4.0%

Canopy Density: 59% Evergreen Component: 17% Deciduous Component: 83% Pools by Stream Length: 38% Pools >=3 ft. deep: 18% Mean Pool Shelter Rtn: 16 Dom. Shelter: Root masses

STREAM REACH 5 Channel Type: D4 Channel Length: 3403 ft. Riffle/Flatwater Mean Width: 16 ft. Total Pool Mean Depth: 1.2 ft. Base Flow: 0.0 cfs Water: 72 - 75 °F Air: 82 - 91 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 85% Dom. Bank Substrate: Cobble/Gravel Embeddness Value: 1. 0% 2. 61% 3. 28% STREAM REACH 6 Channel Type: D3 Channel Length: 6257 ft. Riffle/Flatwater Mean Width: 11 ft. Total Pool Mean Depth: 1.2 ft. Base Flow: 0.0 cfs Water: 62 - 74 °F Air: 66 - 91 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 81% Dom. Bank Substrate: Cobble/Gravel Embeddness Value: 1. 3% 2. 30% 3. 34% STREAM REACH 7 Channel Type: F3 Channel Length: 1153 ft. Riffle/Flatwater Mean Width: 11 ft. Total Pool Mean Depth: 1.0 ft. Base Flow: 0.0 cfs Water: 65 - 68 °F Air: 70 - 74 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 91% Dom. Bank Substrate: Cobble/Gravel Embeddness Value: 1. 18% 2. 47% STREAM REACH 8 Channel Type: F1 Channel Length: 4536 ft. Riffle/Flatwater Mean Width: 9 ft. Total Pool Mean Depth: 1.2 ft. Base Flow: 0.0 cfs Water: 62 - 69 °F Air: 65 - 78 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 86% Dom. Bank Substrate: Cobble/Gravel Embeddness Value: 1. 3% 2. 19% STREAM REACH 9 Channel Type: B1 Channel Length: 5772 ft. Riffle/Flatwater Mean Width: 9 ft. Total Pool Mean Depth: 1.8 ft. Base Flow: 0.0 cfs Water: 63 - 76 °F Air: 70 - 82 °F Dom. Bank Veg.: Evergreen Trees Vegetative Cover: 85 Big Austin Creek Tables Graphs Map of LOD: 378 Dom. Bank Substrate: Coassessment Completed 1995 nnel: 40 ft. Embeddness Value: 1. 0% Page 4 of 20^{2%} 4. 678

Canopy Density: 30% Evergreen Component: 48% Deciduous Component: 53% Pools by Stream Length: 32% Pools >=3 ft. deep: 28% Mean Pool Shelter Rtn: 39 Dom. Shelter: Root masses Occurrence of LOD: 20% Dry Channel: 0 ft. 4. 11%

Canopy Density: 47% Evergreen Component: 69% Deciduous Component: 31% Pools by Stream Length: 50% Pools >=3 ft. deep: 11% Mean Pool Shelter Rtn: 22 Dom. Shelter: Boulders Occurrence of LOD: 23% Dry Channel: 51 ft. 4. 34%

Canopy Density: 54% Evergreen Component: 62% Deciduous Component: 18% Pools by Stream Length: 58% Pools >=3 ft. deep: 18% Mean Pool Shelter Rtn: 16 Dom. Shelter: Boulders Occurrence of LOD: 100% Dry Channel: 0 ft. 3. 18% 4. 18%

Canopy Density: 69% Evergreen Component: 78% Deciduous Component: 22% Pools by Stream Length: 52% Pools >=3 ft. deep: 16% Mean Pool Shelter Rtn: 18 Dom. Shelter: Boulders Occurrence of LOD: 21% Dry Channel: 0 ft. 3.44% 4.34%

Canopy Density: 35% Evergreen Component: 82% Deciduous Component: 18% Pools by Stream Length: 48% Pools >=3 ft. deep: 23% Mean Pool Shelter Rtn: 11 Dom. Shelter: Boulders

Drainage: Russian River

Survey Dates: 09/16/96 to 08/31/95 Table I - SUMMARY OF RIFFLE, FLATWATER, AND POOL HABITAT TYPES

Big Austin Creek

LATITUDE: 38°27'58" LONGITUDE: 123°2'57" Confluence Location: QUAD: Fort Ross LEGAL DESCRIPTION: T7NR11W

MEAN MEAN	AL SHELTER	OL RATING	•	0 28	218 17					
×.	RESIDUAL	POOL VOL	(cu.ft		2	12				
MEAN ESTIMATED	TOTAL	VOLUME	(cu.ft.) (cu.ft.)	24747	113942	554147	0	TOTAL VOL.	(cu. ft.)	1362836
MEAN	VOLUME	AREA (cu.ft.)		3202	493	1544	o	1	Ŭ	
MEAN ESTIMATED	TOTAL	AREA	(sq.ft.)	104313	675621	379776	0	TOTAL AREA	(sq. ft.)	663638
MEAN	AREA	(sq.ft.)		481	277	1058	0			
MEAN	DEPTH	(ft.)		1.5	0.6	1.3	0-0			
MEAN	WIDTH	(ft.) (ft.)		12.8	13.0	15.3	0.0			
TOTAL PERCENT	TOTAL	(ft.) LENGTH		28	36	36	0			
TOTAL	LENGTH	(ft.)		13668	17809	17970	111	TOTAL LENGTH	(ft.)	49557
MEAN	LENGTH	(ft.)		63	22	50	37	TOTAL		
HABITAT	PERCENT	OCCURRENCE		22	29	77	0			
HABITAT	TYPE			RIFFLE	FLATWATER	POOL	DRY			
UNITS	FULLY	MEASURED		60	26	52	0	TOTAL	UNITS	109
HABITAT	UNITS			Big	A 231	32 US	.∾ stin	sme	nt	୍ଥି Tables Graphs Ma Completed 1995 e 5 of 20

Table 2 - SUMMAY OF MAINTRE AND MACHERS Survey Dates: 10/16/6 to 06/11/95 Survey Dates: 10/16/6 to 06/11/95 Final autic from AMD for Automatic Antimation AMD for Automatic Activity and Automatic Activity Act	Table 2		OF HABIT															
				IAT TYPES AND	_	ED PARAM	ETERS		SULVE	y Dates:	09/16/	96 to 05	3/31/95					
MM MMM	Conf Lue	nce Locatic	ani quap:	Fort Ross	LEGAL DI	ESCRIPTI	ON: T7NR	111	LATIT	UDE: 38°	27:58"	LIDNOL	'UDE: 12	112.2.2				
WITS FULLY TYPE OCCUMPRENEE LEMOTH Lemoth <thl< th=""><th>HABITAT</th><th>UNITS</th><th></th><th></th><th>MEAN</th><th>TOTAL</th><th>TOTAL</th><th>MEAN</th><th>MEAN</th><th>MUMIXAN</th><th>MEAN</th><th></th><th>MEAN</th><th>TOTAL</th><th>MEAN</th><th>MEAN</th><th>MEA</th></thl<>	HABITAT	UNITS			MEAN	TOTAL	TOTAL	MEAN	MEAN	MUMIXAN	MEAN		MEAN	TOTAL	MEAN	MEAN	MEA	
The image of the set	UNITS	MEA	TYPE	OCCURRENCE	LENGTH	LENGTH	LENGTH	WIDTH	DEPTH	DEPTH	AREA		VOLUME	VOLUME EST.		SHELTER RATING	CANOP	
77 3 1.6 71 6.4 1.1 5.5 4.6 116 5.4 1.5 7.1 6.41 1.0 5.6 6 1 1.7 711 0.6 1.1 5.5 4.6 180 4. 10 0.6 1.1 5.5 4.6 180 4.7 0.8 1.6 5.6 1.7 6641 0 5.0 4.7 0.8 1.7 6641 0 5.0 4.7 0.7 1.4 6641 0 5.0 4.7 0.7 1.6 5.1 5.6 5.0 4.7 0.7 1.6 5.1 5.6 5.0 4.7 0.7 1.6 5.0 4.7 0.7 1.6 5.0 5.0 4.7 0.7 1.6 5.0	#		0.00	*	ft.	ft.	34	ft.	ft.	ft.	sq.ft.	sq.ft.	cu.ft.	сц.ft.	cu.ft.			
4 1 100 1 305 12207 174 644 0 30 5 7 700 5 7 100 5 12 12207 174 664 0 30 5 7 700 5 7 10 23 12207 174 664 0 30 6 8 7 7 305 12.2 17.4 55318 0 27 10 17 10 30 7 5 6 8 7 7 30 2.1 7 56 563 50 245 10 10 60 17 0 27 17 10 23 10 25 10 25 10 25 10 25 10 11 11 17 11 10 20 23 24 11 10 23 10 23 10 23 10 25 10 23 11 10 20 23 11 11 11 11 11		3	LGR	21	8 9	11653	24	16	2.3		643	110639	5663	974028	0	5	17	
7 7 1 37 11,4 2,1 1207 170 851 0 47 4 3 9 004 5 77 3364 7 11,4 2,3318 0 2,5 4 3 6 Rum 11 77 7115 14 1 902 5,52318 0 2 7 5 5 8 11 7 7115 14 11 0,5 5,2318 0 2 7 7 11 12 14 11 0,5 11,5 14 11 10,5 11,2 2 11,1 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11,2			HGR	ß	4 6	1830	4	10	0.6	1.1	305	12207	174	6941	0	30	37	
(3) (3)	∽ ¢ ړ	4	CAS	F	37	18,	0	0	0.7	1.4	241	1207	170	851	0	47	68	
Matrix	us	6	PON	2	62	3384	7	17	0.8	2.7	616	264,68	503	21642	218	17	58	
710 711 <th 711<="" t<="" td=""><td>stir</td><td>2</td><td>GLD</td><td>8</td><td>71</td><td>4546</td><td>6</td><td>15</td><td>0.5</td><td>1.2</td><td>874</td><td>55911</td><td>277</td><td>28318</td><td>0</td><td>5</td><td>ŝ</td></th>	<td>stir</td> <td>2</td> <td>GLD</td> <td>8</td> <td>71</td> <td>4546</td> <td>6</td> <td>15</td> <td>0.5</td> <td>1.2</td> <td>874</td> <td>55911</td> <td>277</td> <td>28318</td> <td>0</td> <td>5</td> <td>ŝ</td>	stir	2	GLD	8	71	4546	6	15	0.5	1.2	874	55911	277	28318	0	5	ŝ
27 5 500 351 44 11907 0 23 1 1 1 1 1 1 0 1 2 1 7 1 1 1 1 1 1 1 1 0 2 2 1 7 1 1 1 2 2 2 1 7 1 1 1 2 2 1 7 1 2 1 2 1 2 1 7 1 <	۱C	9	RUN	11	22	7115	14	13	0.6	2.1	958	89092	605	56249	0	28	ы	
4 3 EDU 0 77 310 1 11 0.5 1.5 7.12 28.48 7.01 162 0 23 1 1 1 1 1 1 1 1 2.0 1.65 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 0 2.6 2.81 2.60 1.62 0 2.63 3.65 3.7 3.66 7.31 5.48 0 0 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.16 1.2 2.16 2.16 1.2 2.16 2.16 2.13 2.16 2.13 2.15 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.16 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.13 1.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	Cre	2	SRN	3	91	2454	ŝ	¢,	0.7	1.8	606	16351	441	11907	0	6	M	
1 1 1 1 1 1 1 1 1 1 7 366 731 731 748 0 0 66 12 MCP 8 39 2604 5 16 1,2 2.6 533 3136 355 374 10 66671 813 274 10 6 7 2 12 MCP 8 39 2604 5 16 1,2 2.6 533 3135 355 355 355 3135 355 355 355 3137 365 355 355 3137 365 355 355 355 355 355 355 355 355 355 357 10 356 356 574 10 356 356 574 10 356 356 574 10 357 357 10 356 357 150 357 150 357 150 356 575 150 357 151 35 357 151 35 157 151	⊸ eeł	r	EDN	0	11	310	•	1	0.5	1.5	712	2848	290	1162	0	23	' 0	
Action 12 MCP 8 39 2604 5 16 1.3 6.0 681 4.928 1010 6.6671 813 21 5 7 7 7 7 12 1.0 3.1 799 4/737 828 4.5367 574 10 4 1 1 21 1.0 3.1 799 4.737 828 4.5367 574 10 10 4.657 574 10 10 4.55 354 37	,- к Т	-	TRP	0	46	46	0	80	2.0	3.7	366	366	731	731	548	0	2	
6 2 CCP 1 28 165 0 16 1.2 2.6 4.20 2522 533 3136 365 37 3 3 CRP 7 65 3658 7 12 1.0 3.1 799 4.737 828 4.6387 574 10 4 1 LSL 0 74 1.1 4.9 8359 374 702 235 789 376 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 305 780 7	% at	12	MCP	80	39	2604	5	16	1.3	6.0	681	44928	1010	66671	813	21	ы	
S6 7 S1P 7 12 1.0 3.1 799 4/737 828 45387 574 10 3 3 CRP 0 78 135 0 13 1.2 4.2 931 2792 1135 3405 780 30 4 1 1 LSL 0 34 135 0 16 1.2 2.8 7792 1135 3405 780 30 42 9 LSR 9 52 3614 7 16 1.4 5.2 1132 7927 16575 4638 374 37 30 9 PLP 4 1.1 4.9 5.2 132 7927 16575 428 702 25 37 30 9 PLP 4 1.1 4.9 5.2 1327 702 1591 1328 14 31 14 1.1 4.9 5.2 132 702 159 150 150 150 151 152 132 15151	ble	2	ССР	-	28	165	0	16	1.2	2.6	420	2522	523	3136	365	м	ß	
3 3 CRP 0 78 235 0 13 1.2 4.2 931 2792 1135 3405 780 30 4 1 LISL 0 34 135 0 16 1.2 2.8 799 3197 896 3584 702 25 42 9 LSR 9 5 42 1760 4 1.1 4.9 695 29205 867 36426 673 37 30 9 PLP 4 25 16 1.4 5.2 1132 79274 1445 115151 13228 14 30 9 PLP 4 25 12 1.4 5.9 1247 54872 1898 83506 1502 19 19 4 BPL 4 27 20 13 31 1247 54872 1898 83506 1502 19 8 33 19 4 BPL 4 27 16 1.4 20 14 14 3	s	7	STP	7	65	3658	7	12	1.0	3.1	299	44737	828	46387	574	10	40	
4 1 LSL 0 34 135 0 16 1.2 2.8 799 3197 896 3584 702 25 42 9 LSR 5 42 1760 4 1.1 4.9 695 29205 867 36426 673 37 70 B LSR 9 52 3614 7 16 1.4 5.2 1132 79274 16575 428 37 30 9 PLP 4 25 757 2 12 1.6 7 38 83506 1502 19 19 4 BPR 0 21 42 0 1.4 5.1 5.2 16575 428 33 3 0 BPR 2 29 558 17 320 459 151 8 3 0 BPR 2 35 7068 356 677 428 33 3 0 BPR 2 29 10 29 57 466 <td>∽ Gr</td> <td>2</td> <td>CRP</td> <td>0</td> <td>78</td> <td>235</td> <td>0</td> <td>13</td> <td>1.2</td> <td>4.2</td> <td>931</td> <td>2792</td> <td>1135</td> <td>3405</td> <td>780</td> <td>30</td> <td>42</td>	∽ Gr	2	CRP	0	78	235	0	13	1.2	4.2	931	2792	1135	3405	780	30	42	
42 9 LSR 5 42 1760 4 14 1.1 4.9 695 29205 867 36426 673 37 70 8 LSBK 9 5 47 2059 4 18 1.4 5.2 1132 79274 165 151 1328 14 30 9 LP 4 25 757 2 12 16 1.4 5.9 1247 54872 1898 83506 1502 19 21 9 LBB 2 757 2 12 1.4 5.9 1247 54872 1898 83506 1502 19 22 2 2 7 10 0.9 3.1 372 7068 355 6575 428 33 19 4 BP 1.4 0.1 3.1 3.1 3.12 3.3 3.66 677 428 33 6767 428 33 6767 428 43 43 43 43 43 43 43 <	⊸ ap	*	L SL	0	34	135	0	16	1.2	2.8	662	3197	896	3584	702	25	60	
70 8 LS8k 9 52 3614 7 16 1.4 5.2 1132 79274 1445 113151 1328 14 44 9 LS8o 5 47 2059 4 18 1.4 5.9 1247 54872 1898 83506 1502 19 20 9 PLP 4 25 757 2 12 1.4 5.9 1247 54872 1328 14 2 2 2 12 1.6 10.5 2.93 8799 552 16575 428 33 2 2 2 1 10 0.9 3.1 372 7068 356 6767 428 151 8 3 0 BPR 0 6 1 10 0.9 3.1 372 7068 355 6767 428 43 51 8 3 0 BPR 1 1 1 1 1 1 311 1244 375 1500 250	hs	6	LSR	5	42	1760	4	14	1.1	4.9	695	29205	867	36426	673	37	2	
44 9 LSBo 5 47 2059 4 18 1.4 5.9 1247 54872 1898 83506 1502 19 30 9 PLP 4 25 757 2 12 1.6 10.5 293 8799 552 16575 428 33 2 2 2 29 558 1 10 1.3 2.2 192 384 230 459 151 8 3 0 BPR 2 29 558 1 10 0.9 3.1 372 7068 356 6767 246 15 8 4 3 BPL 0 61 183 0 7 0.5 2.0 224 677 246 15 4 3 BPL 0 41 164 0 7 1.1 3.1 1244 375 160 252 41 5 DPL 1 164 0 7 1.1 3.1 1244 375 1500	sΝ	80	LSBK	6	52	3614	7	16	1.4	5.2	1132	79274	1645	115151	1328	14	60	
30 9 PLP 4 25 757 2 12 1.6 10.5 293 8799 552 16575 428 33 2 2 2 2 1 42 0 10 1.3 2.2 192 384 230 459 151 8 19 4 BPR 2 29 558 1 10 0.9 3.1 372 7068 356 6767 246 15 8 3 0 BPR 0 61 183 0 7 0.5 2.0 224 677 246 15 43 4 3 BPL 0 41 164 0 7 1.1 3.1 1244 375 1500 252 41 9 5 DPL 1 23 111 10 0.0 0		6	LSBo	5	47	2059	4	18	1.4	5.9	1247	54872	1898	83506	1502	19	58	
2 SCP 0 21 4.2 0 10 1.3 2.2 192 384 230 459 151 8 4 BPB 2 29 558 1 10 0.9 3.1 372 7068 356 6767 246 15 0 BPR 0 61 183 0 7 0.5 2.0 224 672 112 336 67 43 3 BPL 0 41 164 0 7 1.1 3.1 311 1244 375 1500 252 41 5 DPL 1 20 1.1 3.1 3.11 1244 375 1500 252 41 6 DRY 0 37 111 0 0.0 0.0 0 <td></td> <td>6</td> <td>PLP</td> <td>4</td> <td>25</td> <td>757</td> <td>2</td> <td>12</td> <td>1.6</td> <td>10.5</td> <td>293</td> <td>6628</td> <td>552</td> <td>16575</td> <td>428</td> <td>33</td> <td>57</td>		6	PLP	4	25	757	2	12	1.6	10.5	293	6628	552	16575	428	33	57	
4 BPB 2 29 558 1 10 0.9 3.1 372 7068 356 6767 246 15 0 BPR 0 61 183 0 7 0.5 2.0 224 677 246 15 3 BPL 0 41 164 0 7 1.1 3.1 1244 375 1500 252 41 5 DPL 1 21 1991 4 29 1.5 5.5 5606 50450 8956 80505 8433 21 0 DRY 0 37 111 0 0.0 0.0 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	2	2	SCP	0	21	42	0	10	1.3	2.2	192	384	230	459	151	80	22	
0 BPR 0 61 183 0 7 0.5 2.0 224 672 112 336 67 43 3 BPL 0 41 164 0 7 1.1 3.1 311 124,4 375 1500 252 41 5 DPL 1 221 1991 4 29 1.5 5.5 5606 50450 8956 80605 8433 21 0 DRY 0 37 111 0 0.0 0.0 0 <td>6</td> <td>4</td> <td>врв</td> <td>2</td> <td>29</td> <td>558</td> <td>۴</td> <td>10</td> <td>0.9</td> <td>3.1</td> <td>372</td> <td>7068</td> <td>356</td> <td>6767</td> <td>246</td> <td>15</td> <td>46</td>	6	4	врв	2	29	558	۴	10	0.9	3.1	372	7068	356	6767	246	15	46	
3 BPL 0 41 164 0 7 1.1 3.1 311 1244 375 1500 252 41 5 DPL 1 221 1991 4 29 1.5 5.5 5606 50450 8956 80505 8433 21 0 DRY 0 37 111 0 0 0.0 0 0 0 0 0 0 10TAL LENGTH LENGTH (f1.) (f1.) (sc.f1) (cu.f1)	M	0	BPR	0	61	183	0	7	0.5	2.0	224	672	112	336	67	43	90	
5 DPL 1 221 1991 4 29 1.5 5.5 5606 50450 8956 8433 21 0 DRY 0 37 111 0 0.0 0.0 0 0 0 0 0 TOTAL LENGTH (f1.) (f1.) (f1.) (so.f1.) 0 0 0 0 0	4	2	BPL	0	41	164	0	2	1.1	3.1	311	1244	375	1500	252	41	ы	
0 DRY 0 37 111 0 0.0 0.0 0 0 0 0 0 0 0 0 0 1 TOTAL LENGTH AREA TOTAL WOL.	6	5	DPL	-	221	1991	4	29	1.5	5.5	5606	50450	8956	80605	8433	21	5	
TOTAL LENGTH AREA TOT AREA TOT (sa.ft)	Μ	0	DRY	0	37	111	0	0	0.0	0.0	0	0	0	0	0	0	2	
(MITS (50.ft) (50.ft)	TOLAL	TOTAL				LENGTH						AREA	TOTA	IL WOL.				
	STIMU	In take to The sec.																

Big Au	Big Austin Creek						Drai	nage: Ru	Drainage: Russian River	L				
Table	Table 3 - SUMMARY OF POOL TYPES	OF POOL TYP	ES				Surv	ey Dates	: 09/16/96	Survey Dates: 09/16/96 to 08/31/95	·95			
Conflu	Confluence Location: QUAD: Fort Ross	n: QUAD: Fo		LEGAL DESCRIPTION: T7NR11U	T :NOIT	NR11L	LAT ?	TUDE: 36	LAT!TUDE: 38°27158"	LONGITUDE: 123°2'57"	123*2157	Ę		
HABITAT		HABITAT	HABITAT	MEAN	TOTAL	TOTAL PERCENT	MEAN	MEAN	MEAN	TOTAL	MEAN	TOTAL	MEAN	MEAN
UNITS	S FULLY MEASURED	TYPE	PERCENT	LENGTH	LENGTH	TOTAL	HIDIN	DEPTH	AREA	AREA	VOLUME	VOLUME	RESIDUAL SHELTER	SHELTER
				(ft.)	(ft.)		(ft.)	(ft.) (ft.)	(sq.ft.)	(sq.ft.) (sq.ft.) (cu.ft.) (cu.ft.) (cu.ft.)	(cu.ft.)	(cu.ft.)	(cu.ft.)	
Bi	9 22	MAIN	36	50	6473	36	14.7	1.2	670	86451	916	118128	706	15
م م A	3 39	SCOUR	54	44	8559	48	15.7	1.3	962	185668	1392	268639	1099	54
M Aust	7 14	BACKUATER	10	6 2	2938	16	15.1	1.1	1895	70108	2889	106881	2525	21
tin (essi	TOTAL			TOTAL	TOTAL LENGTH					TOTAL AREA		TOTAL VOL.		
	STINU S				(ft.)					(sq.ft.)		(cu.ft.)		
eek ⁻ ent C age	Ŕ				17970					342228		493648		
Tab Com														
les (plet														
Gr														

Graphs Map ed 1995 Page 7 of 20

Big Austin Creek

Drainage: Russian River

Survey Dates: 09/16/96 to 08/31/95 Table 4 - SUMMARY OF MAXIMUM POOL DEPTHS BY POOL HABITAT TYPES

LATITUDE: 38°27'58" LONGITUDE: 123°2'57" Confluence Location: QUAD: Fort Ross LEGAL DESCRIPTION: T7NR11W

MEASUKEU		PERCENT	DEPTH C	DEPTH OCCURRENCE	DEPTH	OCCURRENCE	DEPTH	OCCURRENCE	DEPTH	DEPTH OCCURRENCE	DEPTH (OCCURRENCE
e e	1 TRP	0	0	0	0	0	0	0	-	100	0	
Big	S6 MCP	18	0	0	21	32	30	45	S	8	10	
A	6 CCP	2	0	0	4	67	2	33	0	0	0	
us	56 STP	16	0	0	07	71	14	25	2	4	0	
tin	3 CRP	-	a	0	0	0	0	0	2	67	-	
С	t LSL		0	0	2	75	-	25	0	0	0	
re	42 LSR	12	0	0	16	38	17	07	9	14	2	
ek	70 LSBK	19	-	-	17	24	24	34	14	20	14	
T	44 LSBo	12	0	0	16	36	16	36	5	11	7	
ab	30 PLP	8	0	0	13	43	10	33	2	2	2	
le		-	0	0	ſ	50	e	50	0	0	0	
s (19 BPB	5	0	0	13	68	5	26	-	5	0	
Gra ed		-	0	0	2	67	-	33	0	0	0	
ap	4 BPL	-	0	0	-	25	2	50	-	25	0	
hs	6 DPL	м	-	11	•	11	M	33	2	22	2	

Big Austin Creek

Table 5 - Summary of Sheltor by Habitat Type

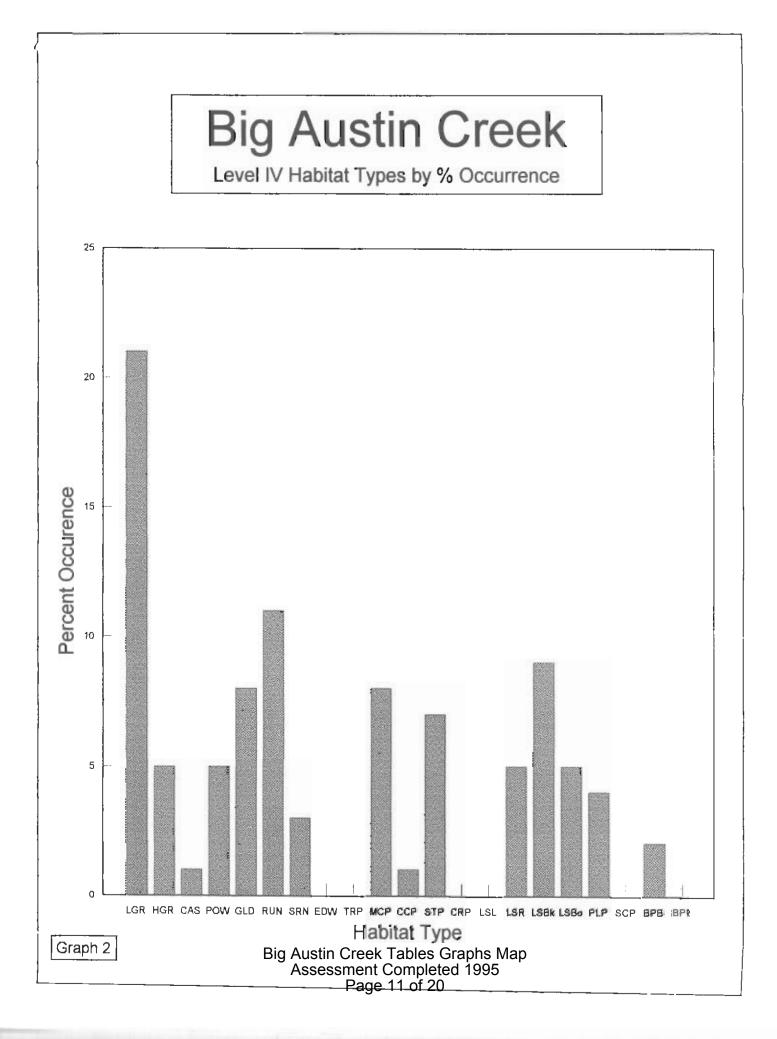
Drainage: Russian River

Survey Dates: 09/16/96 to 08/31/95

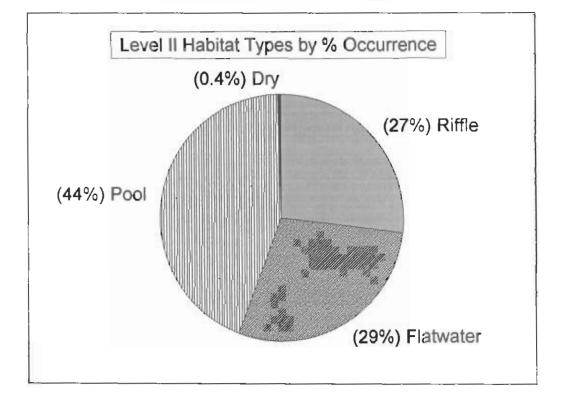
LATITUDE: 38°27'58" LONGITUDE: 123°2'57" Confluence Location: QUAD: Fort Ross LEGAL DESCRIPTION: T7NR11W

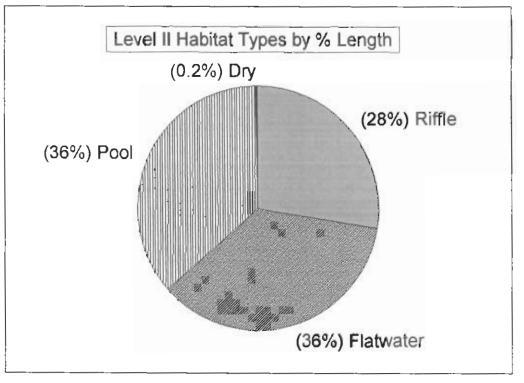
	NUTTS	UNITS	HABITAT	sq. f1.	SQ. FT.	SQ. FT	. SQ.	SQ. FT.	SQ. FT.	SQ. FT.	SQ. FT.	So. FT.
	MEASURED SHELTE MEASURE		ТҮРЕ	UNDERCUT BANKS	Sup	3	ROOT	TERR.	VEGETATION	WHITE	BOULDEKS	LEDGES
	172	2	LGR	0	69			•	0	0	245	
	40	2	HGR	0	15	,-	7 0	0	0	30	26	
I	ŝ	4	CAS	0	0	J	000	12	0	28	211	
Зig	43	17	POW	43	0	0		15	0	0	839	
јА Д	64	м	GLD	0	0	32		0	0	0		
Aus	93	9	RUN	142	169	0		30	110	0		
stii	27	2	SRN	0	0	0	0	0	103	0		
n (4	r	EDW	0	73	Ų		0	29	0	95	
Cre	-	-	TRP	0	0		0	0	0	0	0	
ee n	66	64	MCP	0	29			ц	6	47	1232	
k - t C	9	ŝ	ССР	-	0		0	0	0	0	Q	
Га	56	56	STP	0	8			0	6	25	117	
ble	ŝ	м	CRP	13	26	-	5 77	0	0	0	0	
es	4	4	LSL	0	132	-	0	0	0	0	168	
Gi	42	42	LSR	209	350	142	2 1182	32	32	0	8	
rap	20	67	LSBK	0	42	16	5 0	31	312	0	908	2170
oh: 199	77	43	LSBo	52	48	76	5 129	40	30	0	3220	
s N 95	30	30	PLP	0	ŝ	0	0 0	0	0	82	605	
Мa	2	2	SCP	0	-	0	0	0	0	0	27	
р	19	17	8PB	65	95	15	5 16	0	0	0	264	
	м	2	BPR	0	0	0	0 11	0	0	0	a	
	4	` †	BPL	0	6	66	9 22	0	22	0	43	
	6	8	DPL	0	138	20	0 204	114	26	0	2241	960
	M	•	DRY	0	0	0	0	0	0	0	0	
TOTAL	810	394	1	525	1209	536	1735	279	753	212	11426	3379
				3%	6.	37	76 7	77	4%	12	21%	721
TOTAL												
POOLS	\$50	07E		072	\$83	67	1705	222	511	154	8734	3379
				X	25	1		24	1.2		523	

Drainage: Russian River

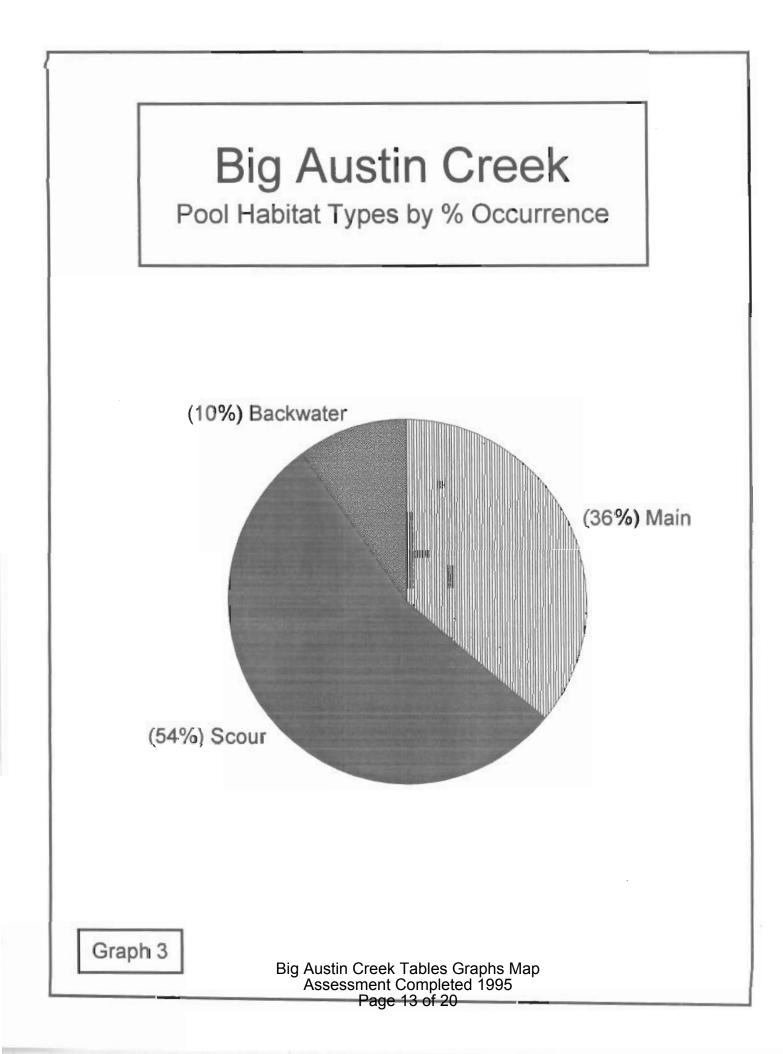

Table 6 - SUMMARY OF DOMINANT SUBSTRATES BY HABITAT TYPE

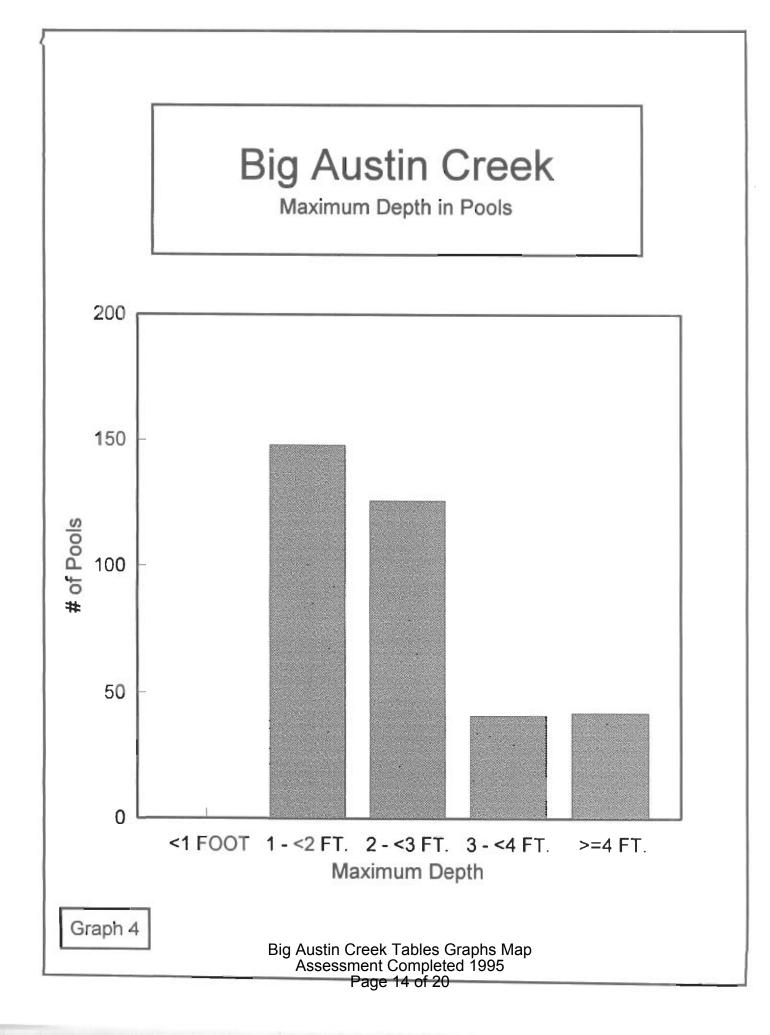
Big Austin Creek

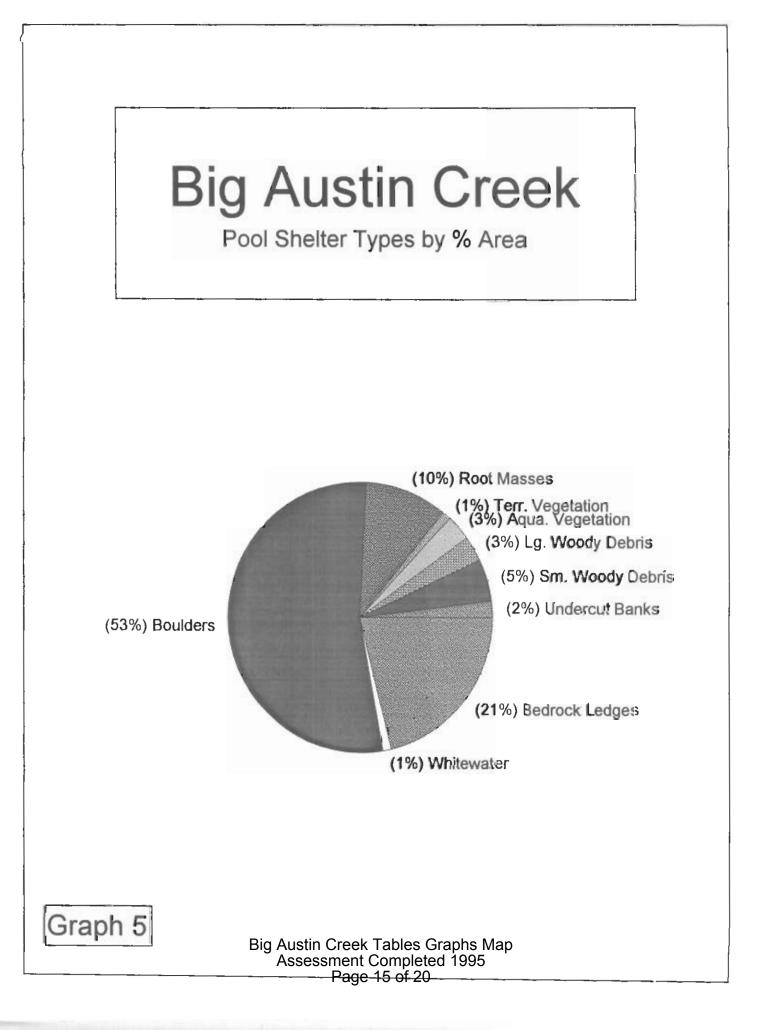

Survey Dates: 09/16/96 to 08/31/95

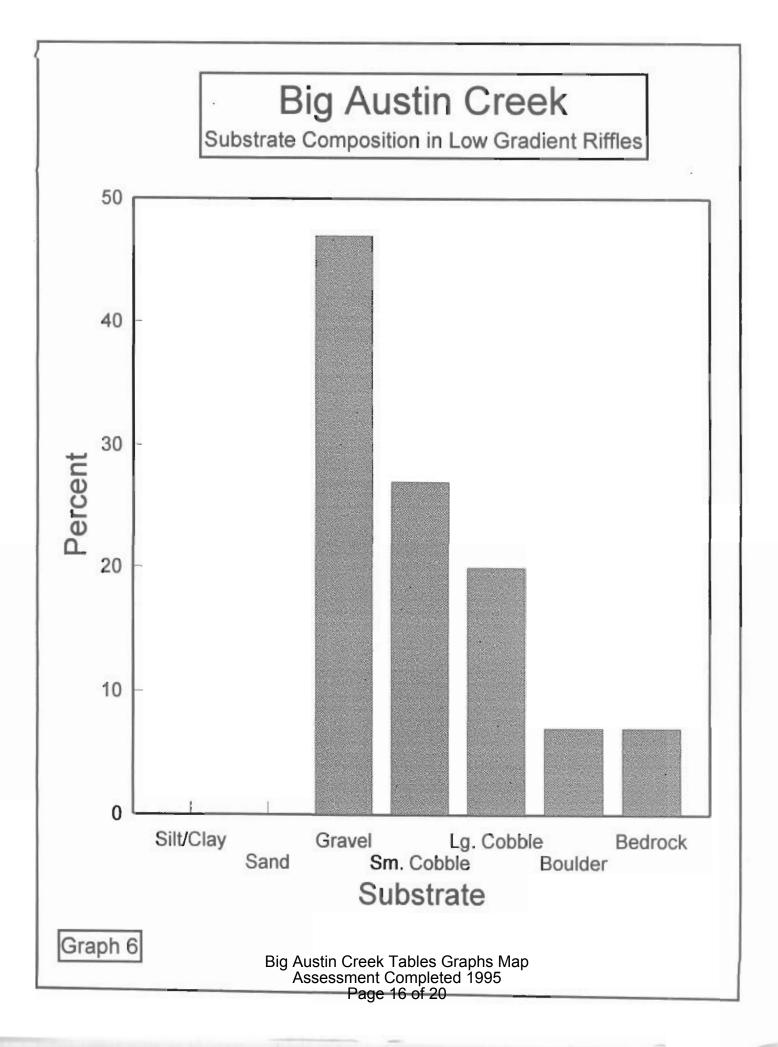

LATITUDE: 38°27*58" LONGITUDE: 123°2'57" Confluence Location: GUAD: Fort Ross LEGAL DESCRIPTION: T7NR11W

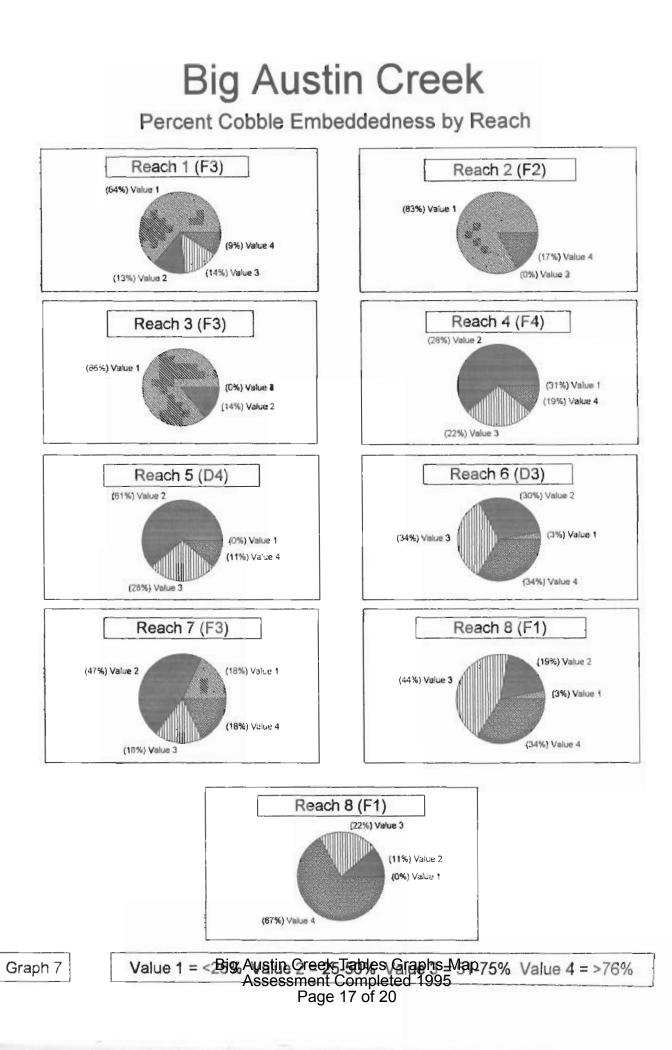
HABITAT	UNITS SUBSTRATE MEASURED	HABITAT TYPE	X TOTAL SILT/CLAY DOMINANT	2 TOTAL SAND DOMENANT	X TOTAL GRAVEL DOMINANT	% TOTAL SM COBBLE DOMINANT	% TOTAL LG COBBLE DOMINANT	% TOTAL BOULDER DOMINANT	% TOTAL BEDROCK DOMINANT
172	5	LGR		0	25	27	20	2	2
Biç	80	HGR	0	a	0	50	25	25	0
۲g A	2	CAS	0	0	20	20	60	0	0
/ព្រ /ព្រ	6	POW	0	0	67	33	0	۵	0
sti se:	Ģ	GLD	0	0	67	17	17	0	0
n ^{ଜ୍} (ss	12	RUN	0	80	50	33	80	0	0
me	6	SRN	0	0	17	67	0	a	17
eě en ag	4	EDW	0	0	25	75	0	0	0
t C	-	TRP	0	0	100	0	۵	0	0
)OI	13	MCP	0	31	97	23	0	a	0
mp	м	ССР	0	0	100	a	0	0	0
es ole	2	STP	0	۵	59	43	14	0	14
යි te	2	CRP	0	67	33	0	0	0	0
raíj d´	2	L SL	0	0	100	0	0	0	0
۹ 19	10	LSR	0	40	07	20	٥	0	0
sশি 95	0	LSBK	0	33	56	11	0	G	0
Viŧ	0	L SBo	0	11	78	11	0	0	0
ւթ	6	PLP	0	11	56	0	11	11	11
N	2	scP	0	50	a	50	a	0	0
61	20	878	0	38	63	0	0	G	a
м	~	BPR	0	100	0	a	0	0	0
4	4	BPL	0	75	25	a	a	a	0
\$	ц	DPL	0	0	40	20	40	a	a
r	(c	c	¢	c	c	c	C

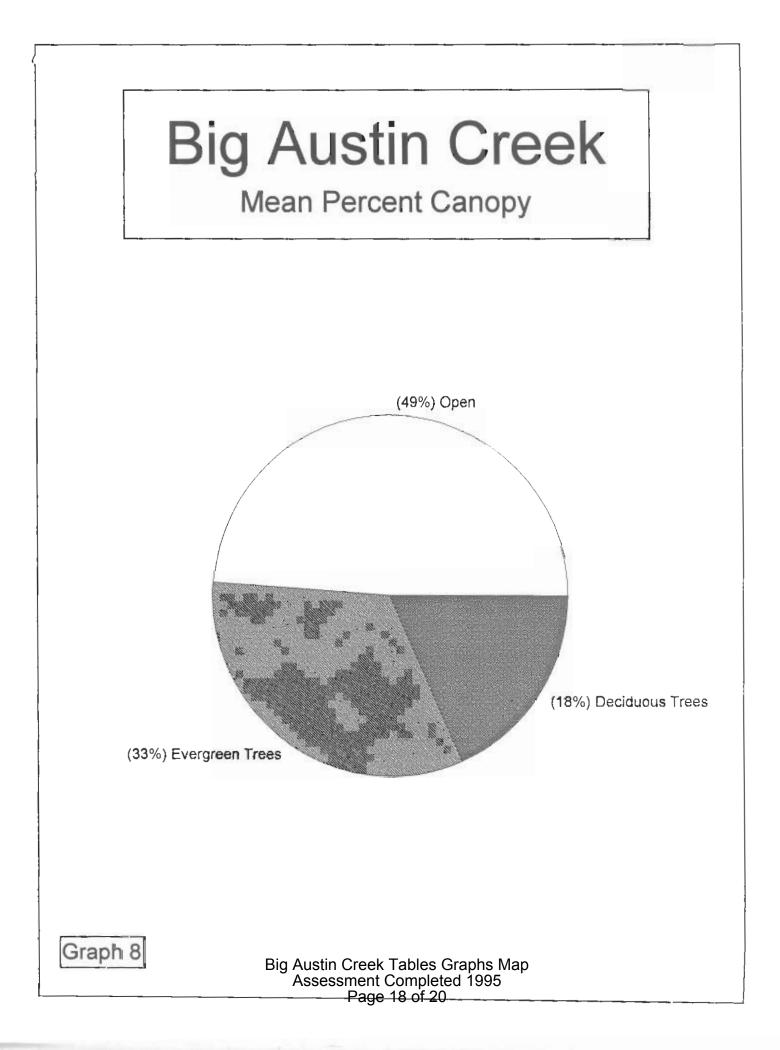

Big Austin Creek Level II Habitat Types

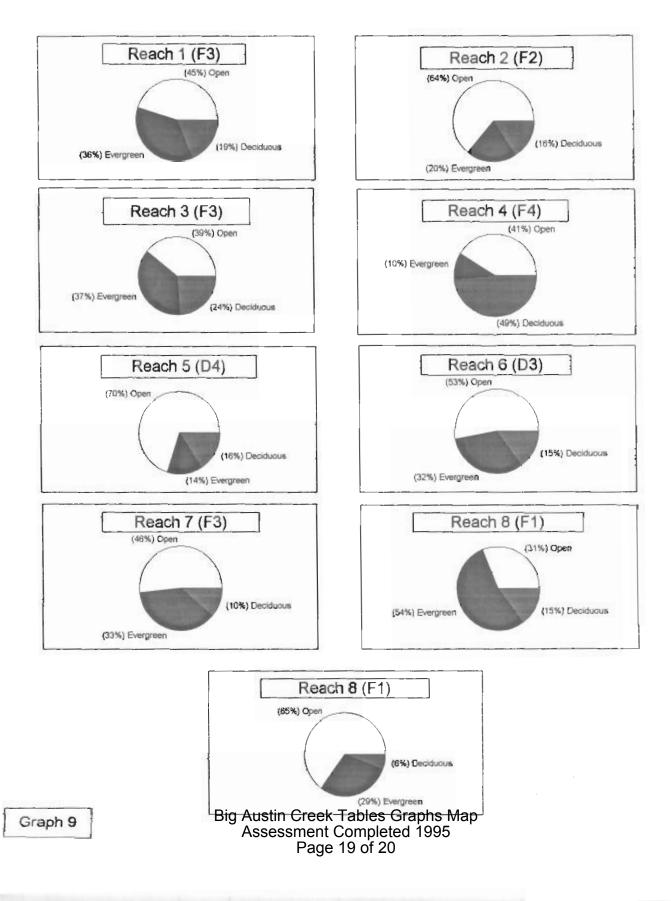


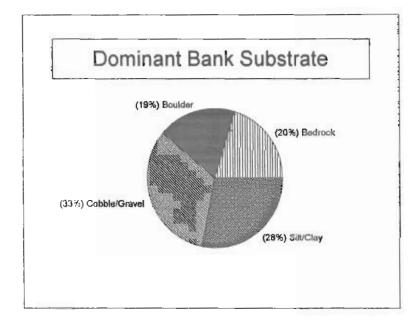


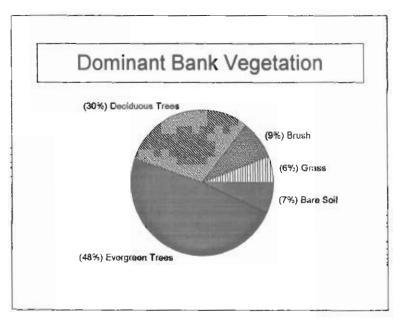



Big Austin Creek Tables Graphs Map Assessment Completed 1995 Page 12 of 20








Big Austin Creek Percent Canopy By Reach

Big Austin Creek

Percent Bank Composition

Graph 10

Big Austin Creek Tables Graphs Map Assessment Completed 1995 Page 20 of 20