CALIFORNIA DEPARTMENT OF FISH AND GAME STREAM INVENTORY REPORT

Hulbert Creek Report Revised April 14, 2006 Report Completed 2000 Assessment Completed 1996

INTRODUCTION

A stream inventory was conducted during the summer of 1996 on Hulbert Creek. The inventory was conducted in two parts: habitat inventory and biological inventory. The objective of the habitat inventory was to document the amount and condition of available habitat to fish, and other aquatic species with an emphasis on anadromous salmonids in Hulbert Creek. The objective of the biological inventory was to document the salmonid and other aquatic species present and their distribution.

The objective of this report is to document the current habitat conditions, and recommend options for the potential enhancement of habitat for Chinook salmon, coho salmon and steelhead trout. Recommendations for habitat improvement activities are based upon target habitat values suitable for salmonids in California's north coast streams.

WATERSHED OVERVIEW

Hulbert Creek is a tributary of the Russian River, located in Sonoma County, California (see Hulbert Creek map, page 2). The legal description at the confluence with the Russian River is T8N, R10W, S31. Its location is 38°29'38" N. latitude and 123°00'19" W. longitude. Year round vehicle access exists from Highway 101 near Guernewood Park, via Camino Del Arroyo Road.

Hulbert Creek and its tributaries drain a basin of approximately 7.9 square miles. Hulbert Creek is a second order stream and has approximately 5.6 miles of blue line stream, according to the USGS Duncan Mills 7.5 minute quadrangles. Major tributaries include Mission Creek, which is described in a separate stream report. Summer flow was measured as approximately 0.081 cfs on Reach 2(average depth of 1.5). Elevations range from about 227 feet at the mouth of the creek to 1250 feet in the headwaters. Redwood forest dominates the watershed, along with mixed conifer and Oak Woodland in the upper watershed. The watershed has a range of land uses ranging from timber harvest to urbanization, and includes land in Armstrong Redwoods State Park.

METHODS

The habitat inventory conducted in Hulbert Creek follows the methodology presented in the <u>California Salmonid Stream Habitat</u> <u>Restoration Manual</u> (Flosi and Reynolds, 1997). The Americorps Volunteers that conducted the inventory were trained in standardized habitat inventory methods by the California Department of Fish and Game (DFG). This inventory was conducted by a two person team and was supervised by Bob Coey, Russian River Basin Planner (DFG).

HABITAT INVENTORY COMPONENTS

A standardized habitat inventory form has been developed for use in California stream surveys and can be found in the <u>California</u> <u>Salmonid Stream Habitat Restoration Manual</u>. This form was used in Hulbert Creek to record measurements and observations. There are nine components to the inventory form: flow, channel type, temperatures, habitat type, embeddedness, shelter rating, substrate composition, canopy, and bank composition.

1. Flow:

Flow is measured in cubic feet per second (cfs) at the bottom of the stream survey reach using standard flow measuring equipment, if available. In some cases flows are estimated. Flows were also measured or estimated at major tributary confluences.

2. Channel Type:

Channel typing is conducted according to the classification system developed and revised by David Rosgen (1985 rev. 1994). This methodology is described in the <u>California Salmonid Stream Habitat</u> <u>Restoration Manual</u>. Channel typing is conducted simultaneously with habitat typing and follows a standard form to record measurements and observations. There are five measured parameters used to determine channel type: 1) water slope gradient, 2) entrenchment, 3) width/depth ratio, 4) substrate composition, and 5) sinuosity.

3. Temperatures:

Water and air temperatures, and time, are measured by crew members with hand held thermometers and recorded at each tenth unit typed. Temperatures are measured in fahrenheit at the middle of the habitat unit and within one foot of the water surface. Temperatures are also recorded using remote Temperature recorders which log temperature every two hours, 24 hours/day.

4. Habitat Type:

Habitat typing uses the 24 habitat classification types defined by McCain and others (1988). Habitat units are numbered sequentially and assigned a type identification number selected from a standard list of 24 habitat types. Dewatered units are labeled "DRY". Hulbert Creek habitat typing used standard basin level measurement criteria. These parameters require that the minimum length of a described habitat unit must be equal to or greater than the

stream's mean wetted width. All unit lengths were measured, additionally, the first occurrence of each unit type and a randomly selected 10% subset of all units were completely sampled (length, mean width, mean depth, maximum depth and pool tail crest depth). All measurements were in feet to the nearest tenth.

5. Embeddedness:

The depth of embeddedness of the cobbles in pool tail-out reaches is measured by the percent of the cobble that is surrounded or buried by fine sediment. In Hulbert Creek, embeddedness was ocularly estimated. The values were recorded using the following ranges: 0 - 25% (value 1), 26 - 50% (value 2), 51 - 75% (value 3), 76 - 100% (value 4). Additionally, a rating of "not suitable" (NS) was assigned to tail-outs deemed unsuited for spawning due to inappropriate substrate particle size, having a bedrock tail-out, or other considerations.

6. Shelter Rating:

Instream shelter is composed of those elements within a stream channel that provide salmonids protection from predation, reduce water velocities so fish can rest and conserve energy, and allow separation of territorial units to reduce density related competition. Using an overhead view, a quantitative estimate of the percentage of the habitat unit covered is made. All shelter is then classified according to a list of nine shelter types. In HULBERT Creek, a standard qualitative shelter value of 0 (none), 1 (low), 2 (medium), or 3 (high) was assigned according to the complexity of the shelter. The shelter rating is calculated for each habitat unit by multiplying shelter value and percent covered. Thus, shelter ratings can range from 0-300, and are expressed as mean values by habitat types within a stream.

7. Substrate Composition:

Substrate composition ranges from silt/clay sized particles to boulders and bedrock elements. In all fully measured habitat units, dominant and sub-dominant substrate elements were ocularly estimated using a list of seven size classes.

8. Canopy:

Stream canopy density was estimated using modified handheld spherical densiometers as described in the <u>California Salmonid</u> <u>Stream Habitat Restoration Manual</u>, 1994. Canopy density relates to the amount of stream shaded from the sun. In Hulbert Creek, an estimate of the percentage of the habitat unit covered by canopy was made from the center of approximately every third unit in addition to every fully-described unit, giving an approximate 30% sub-sample. In addition, the area of canopy was estimated ocularly into percentages of evergreen or deciduous trees.

9. Bank Composition:

Bank composition elements range from bedrock to bare soil. However, the stream banks are usually covered with grass, brush, or trees. These factors influence the ability of stream banks to withstand winter flows. In Hulbert Creek, the dominant composition type and the dominant vegetation type of both the right and left banks for each fully measured unit were selected from the habitat inventory form. Additionally, the percent of each bank covered by vegetation was estimated and recorded.

BIOLOGICAL INVENTORY

Biological sampling during stream inventory is used to determine fish species and their distribution in the stream. Biological inventory is conducted using one or more of three basic methods: 1) stream bank observation, 2) underwater observation, 3) electrofishing. These sampling techniques are discussed in the California Salmonid Stream Habitat Restoration Manual.

DATA ANALYSIS

Data from the habitat inventory form are entered into <u>Habitat</u>, a dBASE IV data entry program developed by Tim Curtis, Inland Fisheries Division, California Department of Fish and Game. This program processes and summarizes the data, and produces the following tables and appendices:

- Riffle, flatwater, and pool habitat types
- Habitat types and measured parameters
- Pool types
- Maximum pool depths by habitat types
- Shelter by habitat types
- Dominant substrates by habitat types
- Vegetative cover and dominant bank composition
- Fish habitat elements by stream reach

Graphics are produced from the tables using Lotus 1,2,3. Graphics developed for Hulbert Creek include:

- Level II Habitat Types by % Occurrence and % Total Length
- Level IV Habitat Types by % Occurrence
- Pool Habitat Types by % Occurrence
- Maximum Depth in Pools
- Pool Shelter Types by % Area
- Substrate Composition in Low Gradient Riffles
- Percent Cobble Embeddedness by Reach
- Mean Percent Canopy
- Mean Percent Canopy by Reach
- Percent Bank Composition and Bank Vegetation

HISTORICAL STREAM SURVEYS:

This is the first survey of Hulbert Creek.

HABITAT INVENTORY RESULTS

* ALL TABLES AND GRAPHS ARE LOCATED AT THE END OF THE REPORT *

The habitat inventory of July 22 to August 11, 1997 was conducted by John Campo and Marc Miller (AmeriCorps). The survey began at the confluence with the Russian River and extended up Hulbert to end of the survey. The total length of the stream surveyed was 34837 feet, with no side channels.

A flow of 2-3 cfs was measured 8-20-90 at habitat unit 12, 146' above survey start with a Marsh-McBirney Model 2000 flowmeter. Flow was estimated to be 0.54 cfs during the survey period.

This section of Hulbert has four channel types: from the mouth to 28202 feet an F4; next 2504 feet a G3; next 1678 feet an A3 and the upper 2453 feet a G3.

A3 channel types are steep (4-10%), narrow, cascading, step-pool streams with a high energy/debris transport associated with depositional soils and a predominantly cobble substrate.

F4 channel types are entrenched meandering riffle/pool channels on low gradients (<2%) with a high width/depth ratio and a predominantly gravel substrate.

G3 channel types are characterized as well entrenched "gully" steppool channels with a low width/depth ratio, a moderate gradient (2-4%) and a predominantly cobble substrate.

Water temperatures on the survey dates ranged from $59^{\circ}F$ to $67^{\circ}F$. Air temperatures ranged from $61^{\circ}F$ to $93^{\circ}F$. Summer temperatures were also measured using remote temperature recorders placed in pools (see Temperature Summary graphs at end of report). A recorder in Reach 1 logged temperatures every 2 hours from July 4 - September 3, 1997. The highest temperature recorded was $57^{\circ}F$ in July and August, and the lowest was $55^{\circ}F$ in July.

Table 1 summarizes the Level II riffle, flatwater, and pool habitat types. Based on frequency of **occurrence** there were 31% pool units, 27% riffle units, 24% flatwater units, and 18% dry streambed units. Based on total **length** there were 64% dry streambed units, 14% riffle units, 12% flatwater units, and 10% pool units (Graph 1).

Two hundred ninety eight habitat units were measured and 20% were completely sampled. Thirteen Level IV habitat types were

5

identified. The data is summarized in Table 2. The most frequent habitat types by percent **occurrence** were low gradient riffles at 27%, dry streambed 18%, root wad scour pools 13% and runs 13% (Graph 2). By percent total **length**, dry streambed made up 64%, low gradient riffles 14%, runs 7%, and glides 5%.

Ninety three pools were identified (Table 3). Scour pools were most often encountered at 91%, and comprised 93% of the total length of pools (Graph 3).

Table 4 is a summary of maximum pool depths by pool habitat types. Pool quality for salmonids increases with depth. Only five of the 93 pools (5%) had a depth of three feet or greater (Graph 4). These deeper pools comprised only 1% of the total length of stream habitat.

A shelter rating was calculated for each habitat unit and expressed as a mean value for each habitat type within the survey using a scale of 0-300. Pool types had the highest shelter rating at 19. Riffle had the lowest rating with 1 and flatwater rated 8 (Table 1). Of the pool types, the scour pools had the highest mean shelter rating at 21 and main channel pools rated 4 (Table 3).

Table 5 summarizes fish shelter by habitat type. By percent area, the dominant pool shelter types were root masses at 38%, boulders 28%, undercut banks 13%, and large woody debris 12%. Graph 5 describes the pool shelter in Hulbert.

Table 6 summarizes the dominant substrate by habitat type. Gravel was the dominant substrate observed in sevenf of the 15 low gradient riffles measured. Small cobble was dominant in five of the low gradient riffles (Graph 6).

The depth of cobble embeddedness was estimated at pool tail-outs. Of the 91 pool tail-outs measured, 0% had a value of 1; 19 had a value of 2 (21%); 45 had a value of 3 (49%); and 27 had a value of 4 (30%). On this scale, a value of one is best for fisheries.

The mean percent canopy density for the stream reach surveyed was 89%. The mean percentages of deciduous and evergreen trees were 49% and 51%, respectively. Graph 8 describes the canopy for the entire survey and graph 9 describes the canopy by reach.

For the entire stream reach surveyed, the mean percent right bank vegetated was 74% and the mean percent left bank vegetated was 76%. For the habitat units measured, the dominant vegetation types for the stream banks were: 48% evergreen trees, 36% deciduous trees, 15% brush, 1% bare soil and 0% grass. The dominant substrate for the stream banks were: 90% silt/clay/sand, 7% bedrock, 3% boulder and 0% cobble/gravel (Graph 10).

HABITAT INVENTORY RESULTS FOR HULBERT UNNAMED TRIBUTARY(#174)

6

The habitat inventory of 08/14/97 was conducted by Edward Sanchez and Marc Miller (Americorps). The survey began at the confluence with the Russian River and extended up Hulbert Tributary-#174 to the end of the survey. The total length of the stream surveyed was 2754 feet, with an additional 65 feet of side channel.

Flows of 0.25 cfs. were measured on Hulbert Tributary-#174 on 9/20/97.

This section of Hulbert Tributary-#174 has one channel type: from the mouth to 2754 feet an F4. Water temperatures on the survey dates ranged from 59°F to 61°F. Air temperatures ranged from 65°F to 82°F.

Based on frequency of **occurrence** there were 38% flatwater units, 27% riffle units, 23% pool units, and 12% dry streambed units. Based on total **length** there were 47% flatwater units, 35% riffle units, 14% pool units, and 5% dry streambed units. The most frequent habitat types by percent **occurrence** were runs at 32% and low gradient riffles 27%. By percent total **length**, runs made up 41%, low gradient riffles 35%.

Scour pools were most often encountered at 93%, and comprised 95% of the total length of pools. 14% of pools had a depth of two feet or greater, comprising 1% of the total length of stream habitat. Pool types had the highest shelter rating at 22, with the main channel pools having the highest mean shelter rating at 40, and scour pools at 21. By percent area, the dominant pool shelter types were large woody debris at 67%, root masses 18%, undercut banks 9%, and boulders 3%. Of the 14 pool tail-outs measured, 64% had a value of 1 (64%); 36% had a value of 2; 0% had a value of 3 or 4.

The mean percent canopy density for the stream reach surveyed was 89% (25% deciduous and 75% evergreen). Mean percent right/left bank vegetated was 54%/30%, and dominant vegetation types for the stream banks were: 66% evergreen trees, 24% brush, 3% grass, 3% deciduous trees and 3% bare soil. The dominant substrate for the stream banks were: 67% silt/clay/sand, 20% cobble/gravel and 10% bedrock and 0% boulder.

BIOLOGICAL INVENTORY

JUVENILE SURVEYS:

According to Status of Coho Salmon in California (L.R. Brown and P.B. Moyle, 1991), DFG personnel rescued 1500 coho salmon juveniles from Hulbert Creek in 1952.

A National Marine Fisheries Service Bioinventory for the Russian

River estimated 41 Steelhead young of the year in two pools sampled on July 22, 1996.

On 10/21/97 a biological inventory was conducted in four sites of Hulbert Creek to document fish species composition and distribution. Each site was single pass electrofished using one Smith Root Model 12 electrofisher. Fish from each site were counted by species, and returned to the stream. The observers were April Richards, Paul Campo, and Marc Miller (Americorps).

The inventory of Reach 1 started at Bridge #6. No fish were found, site #1 was dry. The survey was continued starting at habitat unit #87 (downstream of wet road crossing #3) and fished intermittently in 6 pools (distance was not recorded). In riffle and pool habitat types seven 0+, four 1+ and one 2+ steelhead were observed along eight sculpin.

The survey was continued starting at bridge #6 (confluence pool with un-named trib.) and ending approximately 500 feet upstream. In riffle and pool habitat types five 0+, and two 1+ steelhead were observed along with seven sculpin.

The survey was continued starting 500' upstream from Bridge #6 and ending approximately 428 feet upstream. In riffle and pool habitat types eight 0+, one 1+ and one 2+ steelhead were observed along with four sculpin.

Species	Observed in Histo	orical and	Recent Surveys
YEARS	SPECIES	SOURCE	Native/Introduced
1996	Steelhead	NMFS	Ν
1997	Steelhead	DFG	N
1997	Sculpin	DFG	N
1953	Coho	Brown & Moyle	Ν

A summary of historical and recent data collected appears in the table below.

ADULT SURVEYS:

A spawning survey was conducted in Hulbert Creek on 3/4/1998, beginning at habitat unit #87 and extending to habitat unit #174. No adult chinook, coho, or steelhead were observed. One juvenile steelhead was observed. Four possible redds were observed, and gravel quality there appeared to be adequate for spawning.

DISCUSSION

Hulbert has three channel types and four reaches: F4 (28202 ft.), G3 (2504 ft.), A3 (1678 ft.) and G3 (2453 ft.).

There are 2802 feet of F4 channel type in Reach 1. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, F4 channel types are good for bank-placed boulders and fair for low-stage weirs, single and opposing wing-deflectors, channel constrictors and log cover. These channel types have suitable gradients and the stable stream banks that are necessary for the installation of instream structures designed to increase pool habitat, trap spawning gravels, and provide protective shelter for fish.

There are 2504 feet of G3 channel type in Reach 2 and 2453 feet in Reach 4. According to the DFG <u>Salmonid Stream Habitat Restoration</u> <u>Manual</u>, G3 channel types are good for bank-placed boulders and fair for low-stage weirs, opposing wing-deflectors and log cover. They are poor for boulder clusters and single wing-deflectors.

There are 1678 feet of A3 channel type in Reach 3. According to the DFG <u>Salmonid Stream Habitat Restoration Manual</u>, A3 channel types are good for bank-placed boulders and fair for low-stage weirs, opposing wing-deflectors and log cover. They are poor for boulder clusters and single wing-deflectors.

The water temperatures recorded on the survey days 07/22/97 to 08/11/97 ranged from $59^{\circ}F$ to $67^{\circ}F$. Air temperatures ranged from $61^{\circ}F$ to $93^{\circ}F$. These temperatures are within the threshold stress level ($65^{\circ}F$) for salmonids. Summer temperatures measured using remote temperature recorders placed in pools ranged from 54° to $56^{\circ}F$ for Reach 1. It is unknown if this thermal regime is typical, but our electrofishing samples found steelhead more frequently in the upper, cooler sample sites. To make any further conclusions, temperatures need to be monitored for a longer period of time through the critical summer months, and more extensive biological sampling conducted.

Pools comprised only 10% of the total **length** of this survey. In third and fourth order streams a primary pool is defined to have a maximum depth of at least three feet, occupy at least half the width of the low flow channel, and be as long as the low flow channel width. In Hulbert, the pools are relatively shallow with 5% having a maximum depth of at least 3 feet. These pools comprised only 1% of the total length of stream habitat. However, in coastal coho and steelhead streams, it is generally desirable to have primary pools comprise approximately 50% of total habitat length.

The mean shelter rating for pools was 19. However, a pool shelter rating of approximately 80 is desirable. The relatively small

9

amount of pool shelter that now exists is being provided primarily by root masses (38%), boulders (28%), undercut banks (13%), and large woody debris (12%). Log and root wad cover in the pool and flatwater habitats would improve both summer and winter salmonid habitat. Log cover provides rearing fry with protection from predation, rest from water velocity, and also divides territorial units to reduce density related competition.

Eighty percent of the low gradient riffles measured had either gravel or small cobble as the dominant substrate. This is generally considered for spawning salmonids.

Seventy nine percent of the pool tail-outs measured had embeddedness ratings of either 3 or 4, and 21% rated a 2. Cobble embeddedness measured to be 25% or less, a rating of 1, is considered best for the needs of salmon and steelhead. In a reach comparison, Reaches 3 and 4 had the best ratings and Reaches 1 and 2 had the poorest ratings.

The higher the percent of fine sediment, the lower the probability that eggs will survive to hatch. This is due to the reduced quantity of oxygenated water able to percolate through the gravel, or because of fine sediment capping the redd and preventing fry emergence. In Hulbert Reaches 1 and 2, sediment sources should be mapped and rated according to their potential sediment yields, and control measures taken.

The mean percent canopy for the survey was 89%. This is an excellent level of canopy since 80 percent is generally considered desirable.

DISCUSSION FOR HULBERT TRIBUTARY #174

The water temperatures recorded on the survey day (08/14/97) ranged from 59°F to 61°F. Air temperatures ranged from 65°F to 82°F. This temperature regime is favorable to salmonids.

Pools comprised 14% of the total **length** of this survey, but the pools are relatively shallow with 20% having a maximum depth of at least 2 feet, comprising 1% of the total length. The mean shelter rating for pools was 22 (provided primarily by large woody debris (67%), root masses (18%), undercut banks (9%), and boulders (3%). 64% of tailouts had a rating of 1, which is considered good for the needs of salmon and steelhead.

The mean percent canopy was 89%, which is very good, since 80% is generally considered desirable.

SUMMARY

Overall, very few fish were observed during the 1997 survey. The 1997 spring surveys documented the presence of 0+ fish indicating

successful spawning in the lower and middle reaches of HULBERT Creek. Few 1+ fish were observed indicating poor holding-over conditions in general, however. Overall, habitat conditions for both steelhead and coho have declined over time.

In general, Reach 1 is poor and Reach 2 is marginal for salmon and steelhead habitat. Portions of the lower reaches have been channelized and levied, thus stream velocity has increased resulting in streambank erosion and loss of mature riparian vegetation. Little riffle habitat exists for spawning, and what does exist is unsuitable for spawning due to high gravel embeddedness, especially in Reach 1. Pool habitats in the lower reach are dry due to channel downcutting. The unstable banks and effects of channelization in these reaches limit instream habitat improvement alternatives, although some opportunity exists. Any work considered in the lower reaches will require careful design, placement, and construction that must include protection for the unstable banks and high stream velocities.

All reaches are good for bank-placed boulders and single and opposing wing-deflectors. They are fair for low-stage (low profile) weirs, boulder clusters and channel constrictors. Log cover structures can be used to increase instream shelter.

The best spawning gravel and rearing habitat in the watershed exists within the upper portion of Hulbert Creek, and with unnamed tributary #174. All reaches have low pool percentages and could benefit from pool-building structures with cover.

GENERAL RECOMMENDATIONS

Hulbert Creek should be managed as an anadromous, natural production stream.

The recent winter storms brought down many large trees and other woody debris into the stream, which increased the number and quality of pools since the drought years. This woody debris, if left undisturbed, will provide fish shelter and rearing habitat, and offset channel incision. Many signs of recent and historic tree and log removal were evident in the active channel during our survey. Efforts to increase flood protection or improve fish access in the short run, have led to long term problems in the system. Landowners should be educated about the natural and positive role woody debris plays in the system, and encouraged <u>not to remove woody debris</u> from the stream, except under extreme buildup and only under guidance by a fishery professional.

SPECIFIC FISHERY ENHANCEMENT RECOMMENDATIONS

1) In Hulbert Creek, active and potential sediment sources

related to the road system need to be mapped, and treated according to their potential for sediment yield to the stream and its tributaries. Identified sites should then be treated to reduce the amount of fine sediments entering the stream.

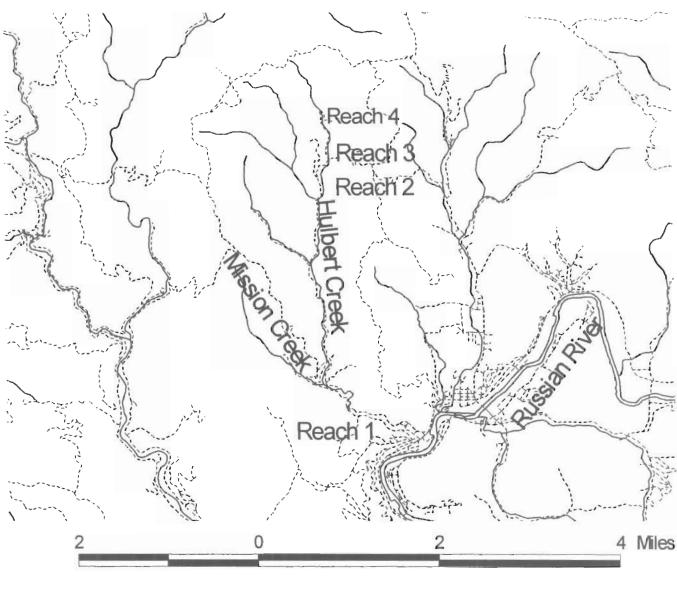
- 2) Map sources of upslope and in-channel erosion, and prioritize them according to present and potential sediment yield. Biotechnical approaches should be used to create a bench, etc. and near-stream riparian planting along any portion of the stream should be encouraged to provide bank stability and a buffering against urban runoff.
- 3) Spawning gravels on Hulbert Creek and Hulbert Trib 174 are relatively limited in upper reaches. Structures to decrease channel incision and recruit spawning gravel (using gravel retention structures), could be installed to trap, sort and expand redd distribution in the stream.
- 4) Where feasible, increase woody cover in the pool and flatwater habitat units along the entire stream. Most of the existing shelter is from vegetation and undercut banks. Adding high quality complexity with larger woody cover is desirable. Combination cover/scour structures constructed with boulders and woody debris would be effective in many flatwater and pool locations in the upper reaches. This must be done where the banks are stable or in conjunction with stream bank armor to prevent erosion (all reaches). In some areas the material is at hand.
- 5) Where feasible, design and engineer pool enhancement structures to increase the number of pools in the upper reaches. This must only be done where the banks are stable or in conjunction with stream bank armor to prevent erosion.

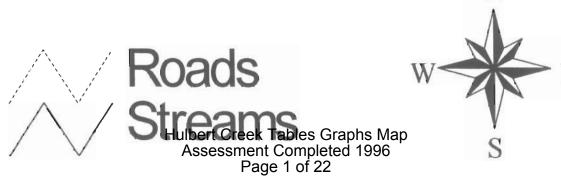
PROBLEM SITES AND LANDMARKS - HULBERT CREEK SURVEY COMMENTS

The following landmarks and possible problem sites were noted. All distances are approximate and taken from the beginning of the survey reach.

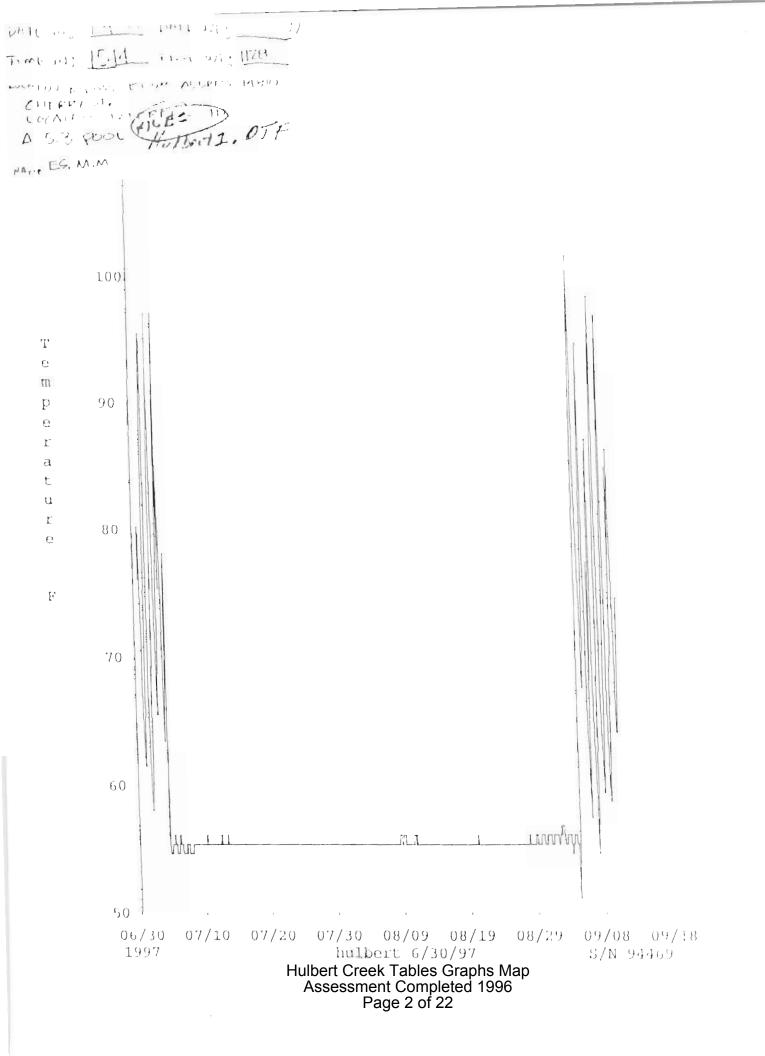
HABITAT	STREAM	COMMENTS
UNIT #	LEN.(FT)
1.00	70	See field book, page 66.
5.00	3000	0+?
7.00	3092	0+?
8.00	3136	Small culvert, noted in field book,
		pg. 69
30.00	4569	Hobo temp. located in pool
31.00	4627	Dry trib., right bank.
40.00	5040	0+?
45.00	5448	Old rusty truck sub-merged by

		gravel, left bank.
47.00	5538	Culvert, left bank, No erosion.
48.00	5585	Culvert, left bank, No erosion.
49.00	10209	Mission Creek on right bank. 246'
		upstream of Fern Bridge Way.
50.00	10282	
52.00		Approx. 75 0+ SHD.
54.00		Culvert left bank, No erosion
56.00		0+ SHD
59.00		
59.00	20523	Culvert on left bank, eroding part of RD.
62.00	20663	0+ SHD
67.00	20845	0+ SHD
72.00	21055	0+ SHD
78.00		0+ SHD
81.00		Wet crossing in main road.
87.00		Road crossing #3 on right bank.
91.00		Res. fish 8" SHD
92.00		Wet crossing is dry. Trib. on right
92.00	23031	bank.
94.00	23183	YOY SHD
96.00	23269	1+ SHD, YOY, Sculpin, Erosion
		scrap-20'L X 15'H X 7'D
97.00	23281	Channel type F4
99.00		Road directly on left bank in unit#
<i>.</i>	23133	99 and #100
102.00	23624	Wet crossing on main road.
107.00	23979	Bridge crossing
121.00	24473	Dry trib. left bank.
122.00	24499	Road crossing, not a main road, not
		used much.
129.00	24853	Old broken concrete weir no longer
		functioning.
130.00	24892	Road on right bank spilling silt in
100.00	21072	creek.
134.00	25087	0+ SHD
144.00		Trailer on opposite side of road
111.00	23017	(right bank).
146.00	25749	0+ SHD
147.00		
147.00	25780	Road access ND RIP-RAP ON RIGHT BANK.
148.00	25843	Road right bank units #148 through
		#150
150.00	25959	0+ SHD.
152.00		Sculpin, 0+ SHD
156.00		0+ SHD.
157.00	20200	Wet trib. right bank spilling in silt into creek. 0+ SHD.
164.00	26688	0+ SHD. Erosion right bank. See
		erosion from.
166.00	26875	0+ SHD
167.00		Erosion right bank. Road above
	20275	LICELOI II III NAINI, KOUU UNOVC


		still.
172.00	27108	1+ SHD
174.00	27260	See field book, Wet trib. right
		bank.
175.00	27287	0+ SHD unit #175 and 176
179.00		Dry trib right bank.
180.00		Dry trib. left bank.
181.00		0+ SHD.
186.00		Wet trib. left bank. 0+ SHD.
100.00	2/020	
100 00	27000	trib temp.=60 F.
188.00		0 + SHD unit# 188 and #189
190.00		(3) 1+ SHD. (see LWD sheet)
191.00		Start of 100% for reach #2
195.00		0+ SHD
196.00		0+ Shd
197.00		0+ SHD
200.00		0+ SHD
204.00	28996	Erosion right bank.
205.00	29020	0+ SHD. Erosion right bank.
209.00	29179	0+ SHD
211.00	29246	0+ and 1+ SHD, Sculpin.
213.00	29323	0+ SHD
214.00	29334	0+ SHD.
217.00		Dry Trib. right bank.
224.00		1+ and 0+ SHD
226.00		1" PVC water diversion pipe 9'
		above stream bed.
227.00	30102	"office" house left bank.
230.00		Offill propery not flagged.
231.00		0+ SHD
235.00		Road access into creek, right bank.
237.00		Bridge Armstrong Woods. 0+ SHD. Wet
237.00	20219	trib. left bank.
238.00	20504	Channel change G3
240.00		
240.00	30079	Erosion scrap, left bank, 30'H X
242 00	20744	15'D X 30'W
243.00		Channel type A3
246.00	30857	
047 00	20021	muse aligned into succh an adalat
247.00	30921	Tree slipped into creek on right
054 00	21000	bank, erosion.
254.00	31202	Major erosion right bank. Nothing
		holding it together. Propabley lose
		road next flood.
256.00		0+ SHD
263.00	31526	0+ SHD.
265.00	31613	0+ SHD.
267.00	31708	0+ SHD
270.00	31868	PGS.
272.00	31983	Dry trib., left bank.
274.00		0+ SHD.
276.00		0+ SHD, sculpin.


277.00	32384	Eroding road on right bank-it's not
		going to last.
278.00	32462	Channel change (G3) Reach #4, begin
		100%.
279.00	32484	0+ SHD.
282.00	32599	Erosion right bank due to run-off
		from road.
284.00	32645	Large 1+, 0+ SHD.
286.00	32713	0+ SHD
287.00	32840	Small footbridge, 6.5' over creek
		bed.
288.00	32860	(3) 2+, 0+, sculpin. Beautiful
		pool/habitat.
291.00	32937	0+ SHD.
293.00	32969	2+ SHD. Erosion left bank.
296.00	33117	Yellow-legged frog.
297.00	33137	Wet trib. left bank. See field
		book, pg. #76
298.00	34837	end of survey

PROBLEM SITES AND LANDMARKS - HULBERT TRIBUTARY #174


HABITAT UNIT #	STREAM LEN.(F1	COMMENTS
		- /
1.00	13	confluence-60 degrees-road through this unit
2.00	36	This creek in general is downcutting
4.00	122	Many 0+
17.00	967	P. Try right bank
19.00	1044	sculpin,0+
26.00	1319	sculpin
29.00	1514	0+
37.00	1896	0+ observed
52.00	2497	2+; huge pool
56.00	2754	End Of Survey

Hulbert Creek

F

שתרחפו ה							Drai	Drainage:						
Table	- SUMMARY	OF RIFFLE,	Tabte 1 - SUMMARY OF RIFFLE, FLATWATER, AND POOL HABITAT TYPES	ID POOL HA	BITAT TV	PES	Surv	ey Dates	:: 07/22/9	Survey Dates: 07/22/97 to 08/11/97	26			
Conflux	Confluence Location: QUAD:	on: QUAD:	LEG/	LEGAL DESCRIPTION:	I I ON :		LATI	LATITUDE: 0°0'0"		LONGITUDE: 0°0'0"	10.0			
HABITAT	T UNITS FULLY MEASURED	HABITAT TYPE	HABITAT PERCENT OCCURRENCE	MEAN LENGTH (ft.)	TOTAL LENGTH (ft.)	TOTAL PERCENT ENGTH TOTAL (ft.) LENGTH	MEAN WIDTH (ft.)	MEAN DEPTH (ft.)	MEAN AREA (sq.ft.)	ESTIM	vo (cu.	MEAN ESTIMATED NLUME TOTAL ft.) VOLUME	MEAN RESIDUAL POOL VOL	MEAN SHELTER RATING
										(sq.ft.)		(cu.ft.)	(cu.ft.)	
≋ Hı	15	RIFFLE	27	61	4888	14	3.5	0.2	181	14505	43	3440	0	-
₽ Jlt	12	FLATWATER	24	58	4170	12	6.9	7"0	667	35938	201	14482	0	80
s per	32	POOL	31	36	3352	10	6.7	0.7	254	23636	213	19766	146	19
t C	0	DRY	18	423	22427	64	0.0	0.0	D	0	0	0	0	0
DOTAL.	TOTAL			TOTAL	TOTAL LENGTH					TOTAL AREA		TOTAL VOL.		
ONITS -	UNITS				(ft.)					(sq. ft.)		(cu. ft.)		
Rables Graphs Ma Completed 1996	29				34837					74079		37688		

Page 3 of 22

Drainage:

Hulbert

Survey Dates: 07/22/97 to 08/11/97 Table 2 - SUMMARY OF HABITAT TYPES AND MEASURED PARAMETERS

UNITS	HABITAT	HABITAT	MEAN	TOTAL	TOTAL	MEAN	MEAN M	MEAN MAXIMUM	MEAN	TOTAL	MEAN	TOTAL	MEAN	MEAN	MEAN
FULLY	TYPE	OCCURRENCE 1	LENGTH	LENGTH	LENGTH	WIDTH	DEPTH	DEPTH	AREA		AREA VOLUME	VOLUME	RESI	Ś	CANOPY
MEASURED	102									EST.		EST.	POOL VOL	RATING	
		ж	ft.	ft.	3€	ft.	ft.	ft.	sq.ft.	sq.ft. sq.ft. cu.ft.	cu.ft.	cu.ft.	cu.ft.		
15	LGR	27	61	4888	4	4	0.2	1.2	181	14505	43	3440	0	-	88
Ŷ	GLD	10	52	1625	5	6	0.4	1.7	203	21794	271	8402	0	M	88
ŝ	RUN	13	60	2274	7	4	0.4	1.3	204	7760	66	3761	0	18	91
-	SRN	-	06	271	-	80	0.4	0.7	638	1913	255	765	0	0	95
r	MCP	2	34	170	0	7	0.8	2.1	220	1101	161	805	144	4	95
ю	CCP	-	24	22	0	6	0.7	1.6	217	651	174	521	133	M	83
r	CRP	2	39	234	-	9	1.0	2.8	264	1586	278	1666	115	80	91
2	LSL	-	22	88	0	2	0.6	1.4	158	634	86	343	85	9	93
80	LSR	13	35	1390	4	2	0.7	4.6	254	10146	225	8997	136	32	89
4	LSBK	5	40	640	2	9	0.6	2.4	227	3636	144	2307	128	ы	89
9	LSBo	5	44	704	2	2	0.8	3.0	325	5195	262	4197	243	17	6
M	ьLP	-	18	54	0	12	1.3	3.1	218	654	292	877	203	40	93
0	DRY	18	423	22427	64	0	0.0	0"0	0	0	0	o	0	0	87
TOTAL				LENGTH						AREA	TOT	TOTAL VOL.			
UNITS				(ft.)					0	(sq.ft)		(cu.ft)			
59				34837						69573		36082			

							Draii	Drainage:						
Table 3	Table 3 - SUMMARY OF POOL TYPES	DF POOL TY	rpes				SULV	ey Dates	07/22/	Survey Dates: 07/22/97 to 08/11/97	16/			
Confluen	Confluence Location: QUAD:	: QUAD:	ΓE	LEGAL DESCRIPTION:	-NOI14		LATI	TUDE: 0°	01011	LATITUDE: 0°0'0" LONGITUDE: 0°0'0"	10.0.0			
HABITAT	UNITS FULLY MEASURED	HABITAT TYPE	HABITAT PERCENT OCCURRENCE	MEAN	TOTAL	TOTAL PERCENT ENGTH TOTAL LENGTH	MEAN	MEAN DEPTH	MEAN AREA	I TOTAL A AREA EST.	NEAN	TOTAL VOLUME EST.	MEAN RESIDUAL POOL VOL.	MEAN SHELTER RATING
				(ft.)	(ft.)		(ft.)	(ft.) (ft.)	(sq.ft.)	(sq.ft.) (sq.ft.) (cu.ft.) (cu.ft.) (cu.ft.)	(cu.ft.)	(cu.ft.)	(cu.ft.)	
∞ Hu	9	MAIN	6	30	242	2	7.8	0.8	219	1750	167	1332	138	4
albe	26	SCOUR	91	37	3110	93	6.6	0.7	257	21851	216	18387	147	21
ert (TOTAL			TOTAL	TOTAL LENGTH					TOTAL AREA		TOTAL VOL.		
STINUTS	UNITS				(ft.)					(sq.ft.)		(cu.ft.)		
ଝ eek Tables Graphs Mar nent Completed 1996 Page 5 of 22	32				3352					23601		19720		

Drainage:	Survey Dates: 07/22/97 to 08/11/97	LATITUDE: 0°0'0" LONGITUDE: 0°0'0"
	DEPTHS BY POOL WABITAT TYPES	LEGAL DESCRIPTION:
Hutbert	Table 4 - SUMMARY OF MAXIMUM POOL DEPTHS BY POOL HABITAT TYPES	Confluence Location: QUAD:

	HABITAT	HABITAT	<1 FOOT	<1 F00T	1-<2 FT.	1-<2 FT. 1-<2 FOOT 2-<3 FT.	2-3 FT.	2-<3 F00T	3-<4 FT.	3-<4 F00T	>=4 FEET	>=4 FEET
	TYPE	PERCENT	MAXIMUM	PERCENT	MAXIMUM	PERCENT	MAXIMUM	PERCENT	MAXIMUM	PERCENT	MAXIMUM	PERCENT
	9	pccurrence	DEPTH C	DEPTH OCCURRENCE	DEPTH	DEPTH OCCURRENCE	DEPTH	DEPTH OCCURRENCE	DEPTH	DEPTH OCCURRENCE	DEPTH	DEPTH OCCURRENCE
540312	MCP	5	0	0	3	60	2	40	0	0	0	0
	CCP	ß	F	33	2	67	0	0	0	0	0	0
v 0	CRP	6	0	0	2	33	4	67	0	0	0	0
.+	LSL	4	-	25	3	75	0	0	0	0	0	0
40	LSR	N V	2	5	28	20	00	20	-	м	-	2
16	LSBK	17	0	0	13	81	£	19	0	0	0	0
16	LSBO	17	-	9	11	69	M	19	-	9	0	0
M	PLP	3	0	0	-	33	0	0	2	67	0	0
TOTAL VNITS 93												

Table 5	Summary of		Shelter by Habitat Type	at Type			Surve	Survey Dates: 07/22/97 to 08/11/97	22/97 to 08	11/197	
Confluence Location:	ce Loca	tion: guap:		LEGAL DE	LEGAL DESCRIPTION:	- 2	LATIT	LATITUDE: 0°0'0"	LONGITUDE: 0°010"	:0.0.0	
UNITS	E.	UNITS HABITAT ELTER TYPE	AT % TOTAL UNDERCUT	24	TOTAL % TOTAL SWD LWD	X TOTAL ROOT	% TOTAL TERR.	% TOTAL AQUATIC	% TOTAL WHITE	% TOTAL BOULDERS	% TOTAL BEDROCK
	MEASURED	ED	BANKS			MASS	VEGETATION	VEGETATION	WATER		LEDGES
	80	16 LGR	0	25	0	23	0	0	0	0	0
	31	8 GLD	100	0		0	0	0	0	0	0
Hı	38	5 RUN	26			0	0	0	0	70	0
ılb	(MI)	1 SRN	0		0	0	0	0	0	0	0
er	ŝ	5 MCP	38	0		15	0	0	0	46	0
t C	i Mi	3 CCP	50		0	0	0	0	0	0	0
re	9	6 CRP	22	6	4	2	0	0	0	64	0
ek	*	4 LSL	0		100	0	0	0	0	Q	0
ς Τ	0	36 LSR	14		6	59	0	0	0	9	0
ał	16	14 LSBK	51	0	0	0	0	0	0	43	9
nle	16	16 LSB9	0	£	13	0	0	0	0	83	ſ
s	P.1	3 PLP	4	14.	26	56	0	0	0	0	0
Gra	53	9 DRY	0	0	0	0	0	0	0	0	0
É.	298 1	126	19	Ø	10	32	0	0	0	30	0
Man											
pool c @	E.C.										

Survey Dates: 07/22/97 to 08/11/97 Table 6 - SUMMARY OF DOMINANT SUBSTRATES BY HABITAT TYPE

Drainage:

Hulbert

	UNITS	HABITAT TYPE	% TOTAL SILT/CLAY	% TOTAL SAND	% TOTAL GRAVEL	% TOTAL SM COBBLE	% TOTAL LG COBBLE	% TOTAL BOULDER	% TOTAL BEDROCK
	MEASURED		DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT	DOMINANT
80	15	LGR	0	20	47	33	0	0	0
Ħ١	9	GLD	17	50	33	0	0	0	0
iit A	2	RUN	0	07	40	20	0	0	0
er	-	SRN	0	0	100	0	0	0	0
ť	2	MCP	0	100	0	0	0	0	0
2 Cre	м	CCP	33	67	0	0	0	0	0
eel	m	CRP	33	33	33	0	0	0	0
k [*] ⊺ nt	2	TST	0	100	0	0	0	0	0
ିଶ୍ଚ ଜା	80	LSR	38	50	13	0	0	0	0
ofe	4	LSBK	0	100	0	0	0	0	0
ŝ	9	LSBo	0	83	0	0	0	0	17
Ĝi	м	PLP	33	67	0	0	0	0	0
räp ed	10	DRY	0	10	80	10	0	0	0

Hulbert

APPENDIX A.	Summary of Mean	Percent Vegeta	tive Cover for	Entire Stream
Mean	Mean	Mean	Mean	Mean
Percent Canopy	Percent Evergreen	Percent Deciduous	Right bank % Cover	Left Bank % Cover
88.97	51.38	48.63	73.62	75.84

APPENDIX B.

Mean Percentage of Dominant Substrate

Dominant	Number	Number	Percent
Class of	Units	Units	Total
Substrate	Right Bank	Left Bank	Units
Bedrock	.4	6	6.58
Boulder	1	4	3.29
Cobble/Gravel	0	0	0
Silt/clay	71	66	90.13

Mean Percentage of Dominant Vegetation

Dominant Class of Vegetation	Number Units Right Bank	Number Units Left Bank	Percent Total Units
Grass	0	0	0
Brush	14	9	15.13
Deciduous Trees	23	32	36.18
Evergreen Trees	38	35	48.03
No Vegetation	1	0	0.66

APPENDIX C. FISH HABITAT INVENTORY DATA SUMMARY

STREAM NAME: Hulbert SAMPLE DATES: 07/22/97 to 08/11/97 SURVEY LENGTH: MAIN CHANNEL: 34837 IL. LOCATION OF STREAM MOUTH: SIDE CHANNEL: 0 ft. Latitude: 0°0'0" USGS Quad Map: Longitude: 0°0'0" Legal Description:

SUMMARY OF FISH HABITAT ELEMENTS BY STREAM REACH

STREAM REACH 1 (Units 1-190) Channel Type: F4 Main Channel Length: 28202 ft. Evergreen Component: 44% Side Channel Length: 0 ft. Deciduous Component: 56% Riffle/Flatwater Mean Width: 7.0 ft. Pools by Stream Length: 9% Pool Mean Depth: 0.7 ft.Pools >=2 ft. Deep: 31%Base Flow: 0.5 cfsPools >=3 ft. Deep: 6%Water: 59-65°F Air: 61-93°FMean Pool Shelter Rtn: 17Dom. Bank Veg.: Evergreen TreesDom. Shelter: BouldersBank Vegetative Cover: 74%Occurrence of LOD: 58% Dom, Bank Substrate: Silt/Clay/Sand Dry Channel: 20066 ft. Embeddness Value: 1. 0% 2. 8% 3. 52% 4. 39%

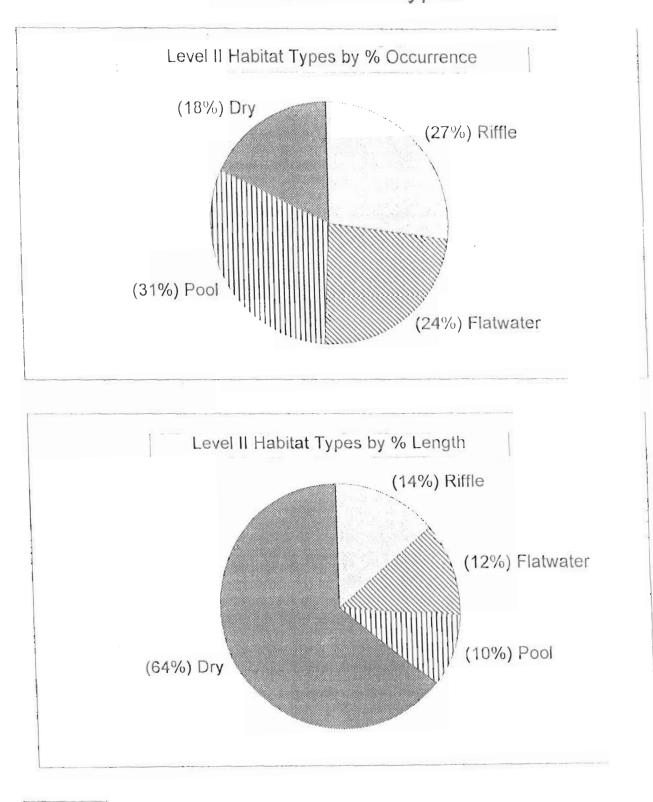
STREAM REACH 2 (Units 191-242) Channel Type: G3 Main Channel Length: 2504 ft. Side Channel Length: 0 ft. Riffle/Flatwater Mean Width: 3.7 ft. Pools by Stream Length: 12% Pool Mean Depth: 0.6 ft. Base Flow: 0.5 cfsPools >=3 IL. Deep. 0.5Water: 60-66°F Air: 80-92°FMean Pool Shelter Rtn: 34Dom. Bank Veg.: Evergreen TreesDom. Shelter: Root massesBank Vegetative Cover: 70%Occurrence of LOD: 65% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 252 ft. Embeddness Value: 1. 0% 2. 23% 3. 62% 4. 15%

STREAM REACH 3 (Units 243-277) Side Channel Length: 1678 ft. Evergreen Component: 50% Riffle/Flatwater Marcan St. Riffle/Flatwater Mean Width: 4.0 ft. Pools by Stream Length: 15% Pool Mean Depth: 0.6 ft. Pools >=2 ft. Deep: 11% Pool Mean Depth: 0.6 ft. Water: 62-67°F Air: 85-91°FPools >=3 ft. Deep: 11%Dom. Bank Veg.: Evergreen TreesDom. Shelter Rtn: 13Bank Vegetative Cover: 70%Dom. Shelter: Root massesDom. Bank Substrate: Silt (2)Occurrence of LOD: 0% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 387 ft. Embeddness Value: 1. D% 2. 67% 3. 22% 4. 11%

Mean Canopy Density: 88%

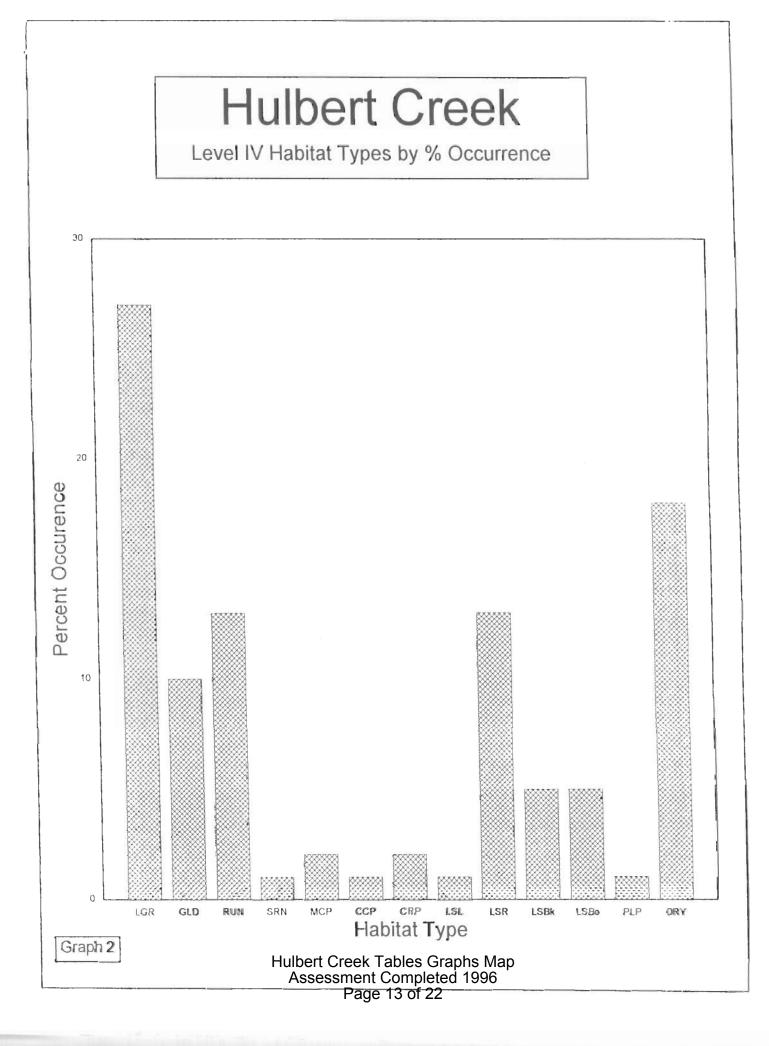
Mean Canopy Density: 92% Evergreen Component: 61% Deciduous Component: 39% Pools >=2 ft. Deep: 7%

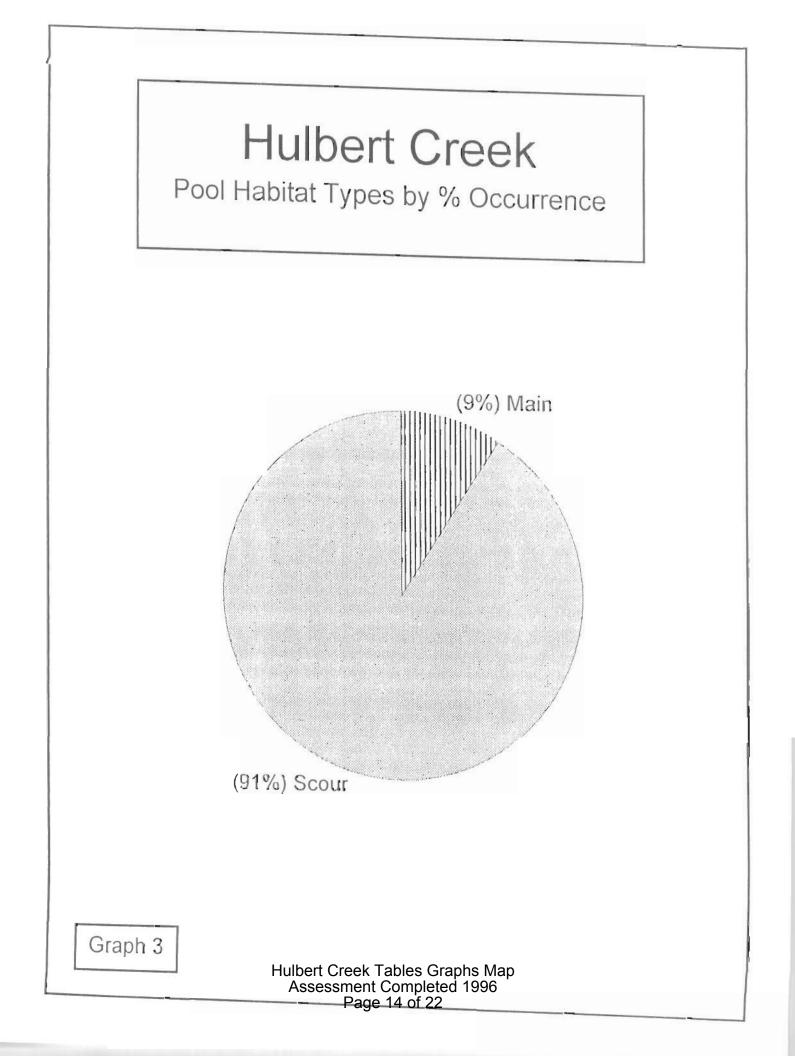
Deciduous Component: 50%

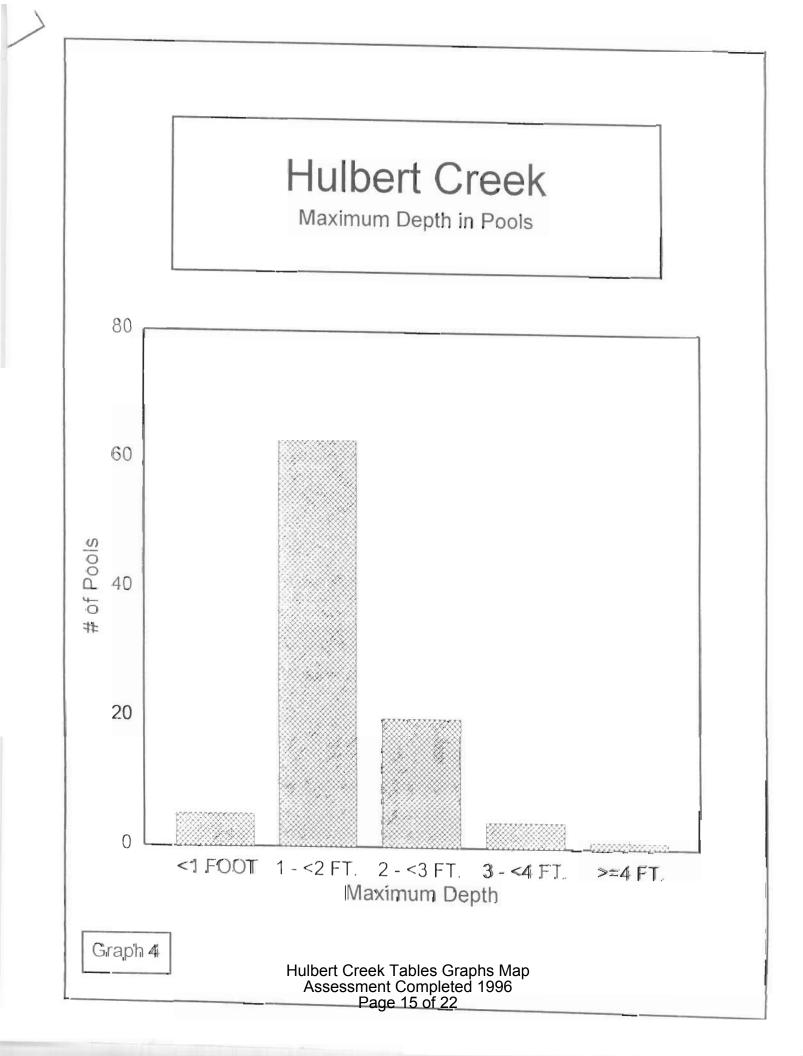

Hulbert Creek Tables Graphs Map Assessment Completed 1996 Page 10 of 22

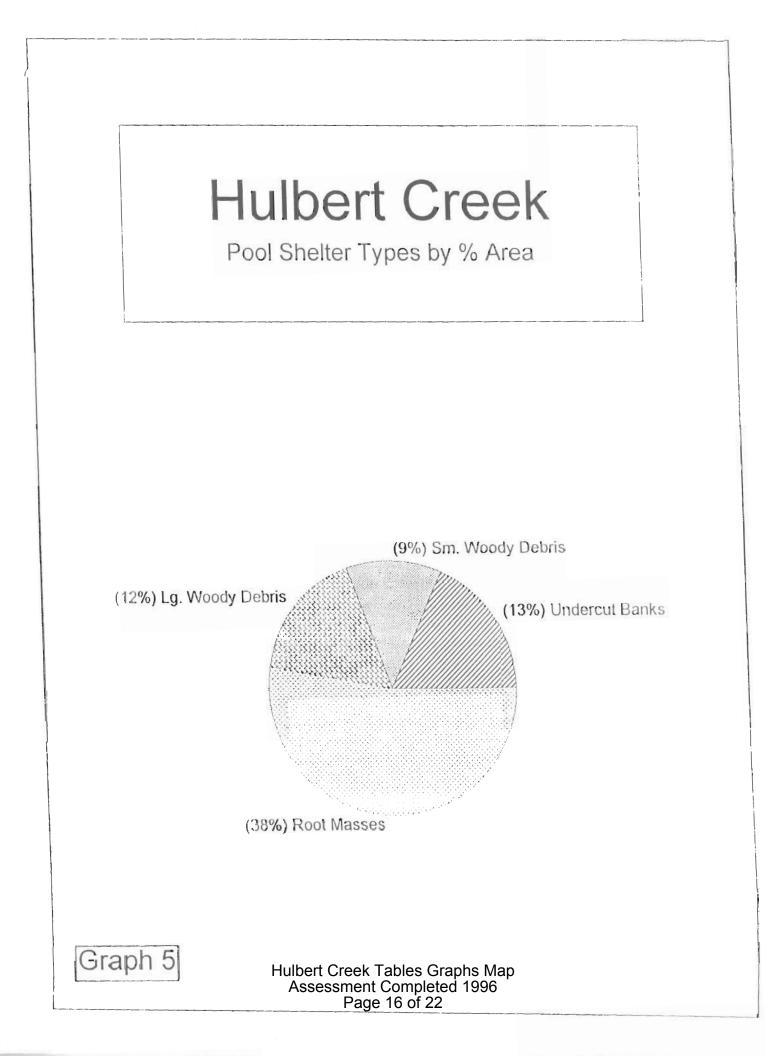
STREAM REACH 4 (Units 278-298) Channel Type: G3 Main Channel Length: 2453 ft. Side Channel Length: 0 ft. Riffle/Flatwater Mean Width: 2.6 ft. Pools by Stream Length: 8% Pool Mean Depth: 1.0 ft. Base Flow: 0.5 cfs Water: 59-59°F Air: 62-64°F Dom. Bank Veg.: Evergreen Trees Bank Vegetative Cover: 87% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 1722 ft. Embeddness Value: 1. 0% 2. 63% 3. 38% 4. 0%

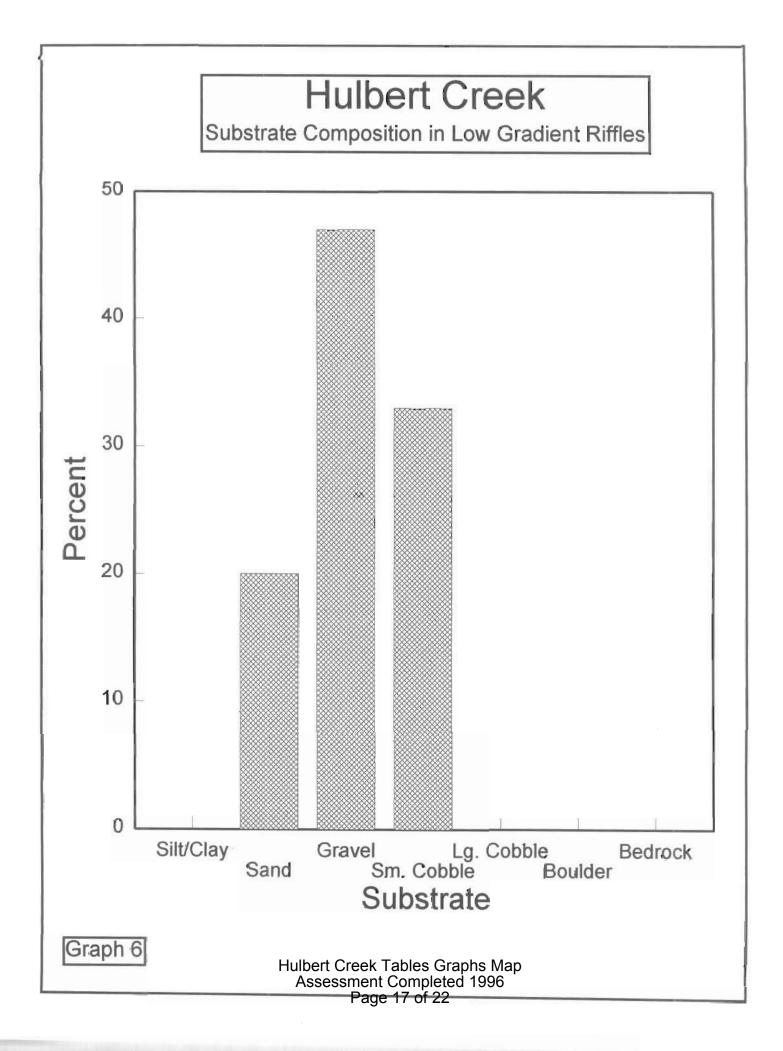
Mean Canopy Density: 91% Evergreen Component: 85% Deciduous Component: 15% Pools >=2 ft. Deep: 50% Pools >=3 ft. Deep: 13% Mean Pool Shelter Rtn: 19 Dom. Shelter: Undercut Banks Occurrence of LOD: 50%

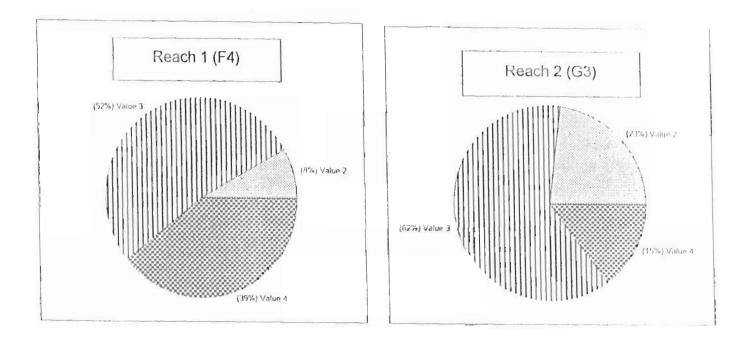

Hulbert Creek Tables Graphs Map Assessment Completed 1996 Page 11 of 22

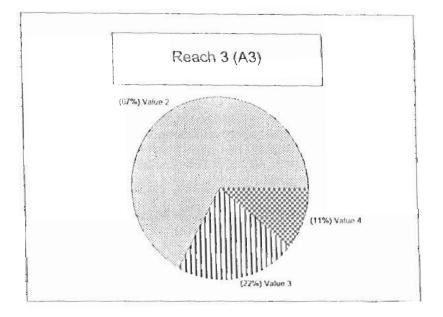

Hulbert Creek Level II Habitat Types



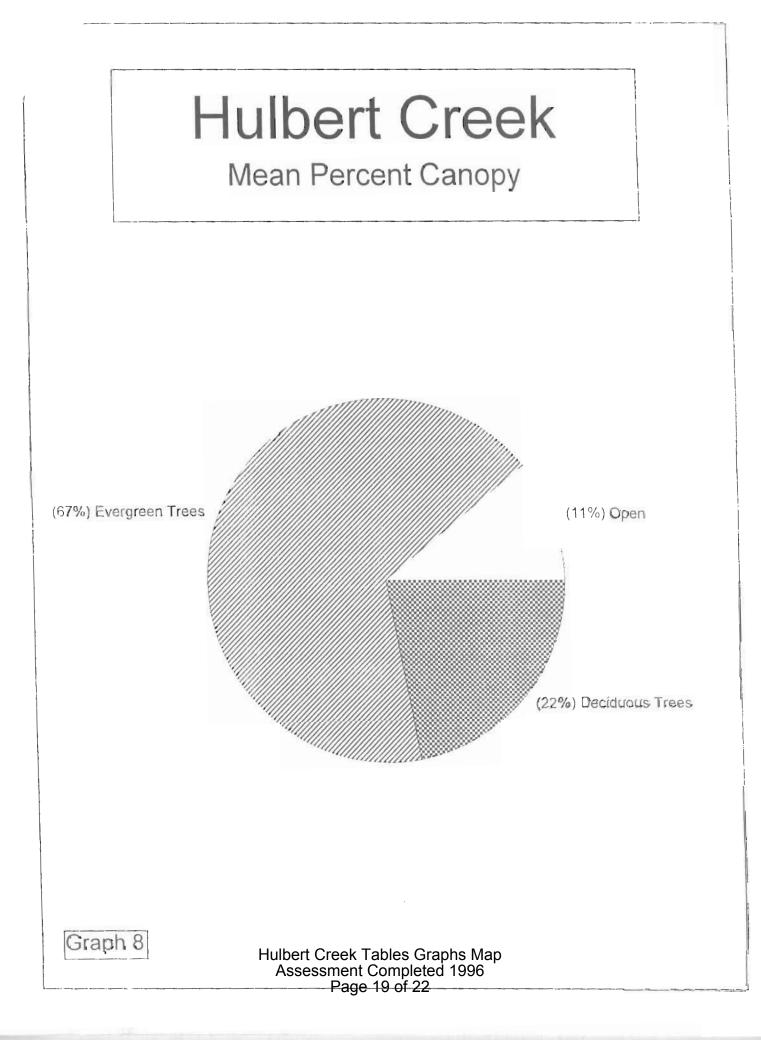

Graph 1

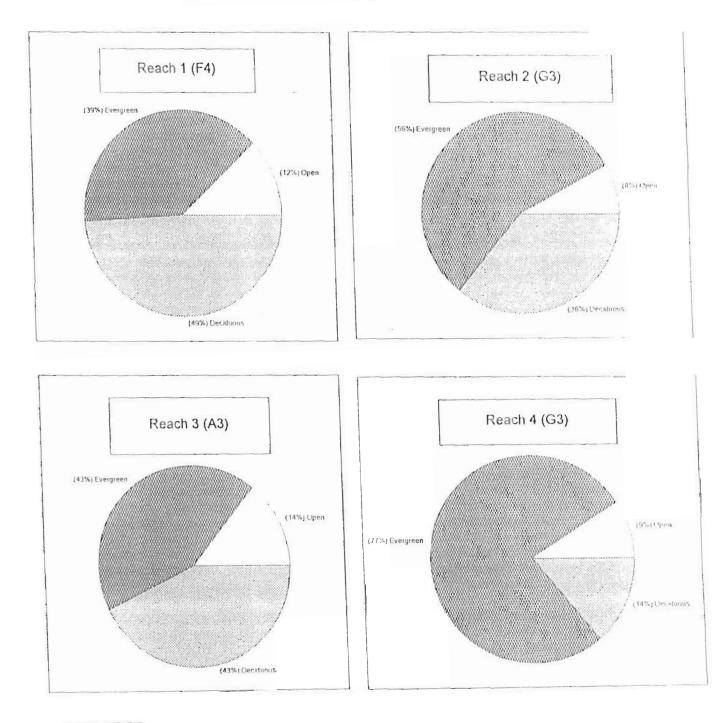

Hulbert Creek Tables Graphs Map Assessment Completed 1996 Page 12 of 22





Hulbert Creek Percent Cobble Embeddedness by Reach

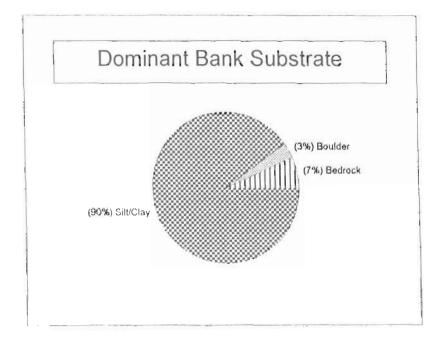


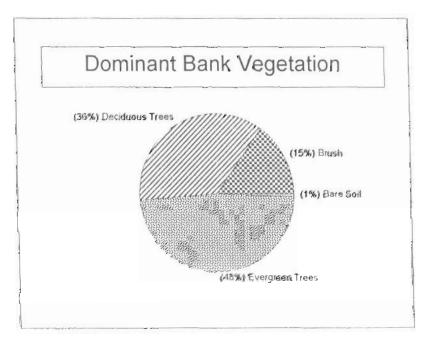

Value 1 = <25% Value 2 = 25-50% Value 3 = 51-75% Value 4 = >76%

Graph 7

Hulbert Creek Tables Graphs Map Assessment Completed 1996 Page 18 of 22

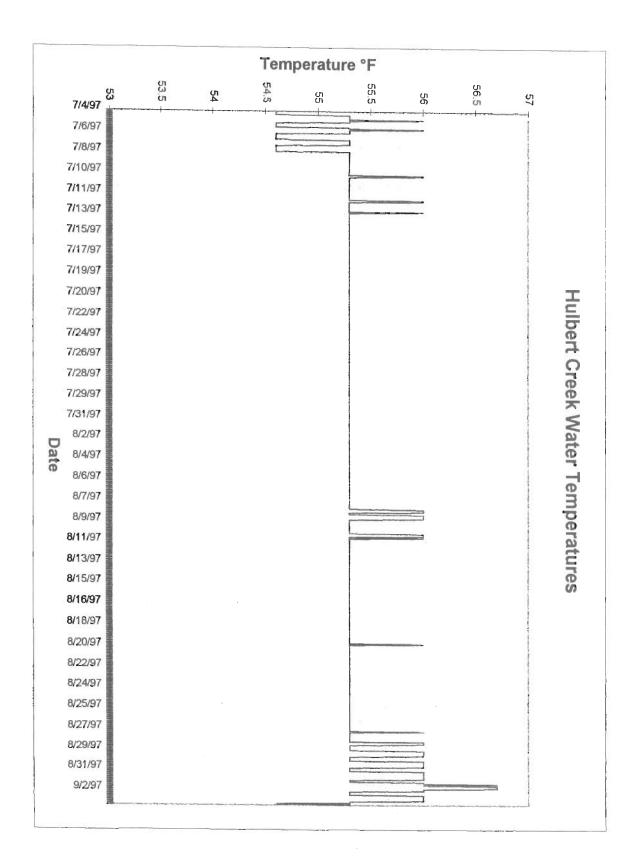
Hulbert Creek Percent Canopy By Reach

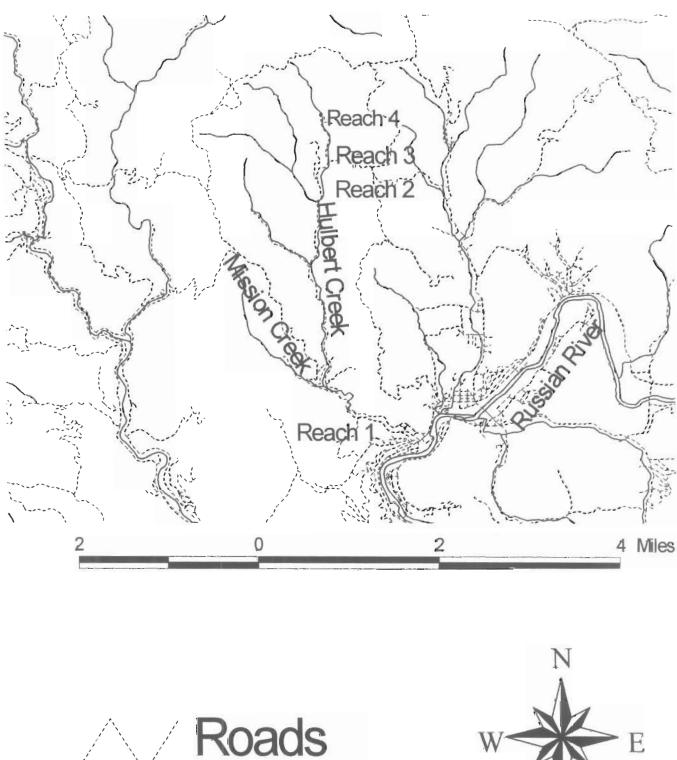



Graph 9

Hulbert Creek Tables Graphs Map Assessment Completed 1996 Page 20 of 22

Hulbert Creek


Percent Bank Composition


Graph 10

Hulbert Creek Tables Graphs Map Assessment Completed 1996 Page 21 of 22

Hulbert Creek Tables Graphs Map Assessment Completed 1996 Page 22 of 22

Hulbert Creek

ulbert Creek Tributary Tables Graphs Map Assessment Completed 1996 Page 1 of 9

S

Hulbert Tributary-#174

Drainage: Hulbert Creek

UNITY HABITAT MBAN TOTAL BERGIN MBAN TOTAL BERGIN MBAN SATINATED MBAN MBAN SATINATED MBAN BASTINATED MBAN BASTINATED <th>UNITY HABITATY HABITATY NABIT TOTAL REACH MEAN TOTAL REAT MEAN MEAN</th> <th></th> <th></th> <th>CONTINUE TOCACION MAN</th> <th>TROP</th> <th>LEGAL DESCRIPTION:</th> <th>NOIT?</th> <th></th> <th>LATIT</th> <th>LATITUDE: 0°0'0"</th> <th></th> <th>LONGITUDE: 0°0'0"</th> <th></th> <th></th> <th></th> <th></th>	UNITY HABITATY HABITATY NABIT TOTAL REACH MEAN TOTAL REAT MEAN			CONTINUE TOCACION MAN	TROP	LEGAL DESCRIPTION:	NOIT?		LATIT	LATITUDE: 0°0'0"		LONGITUDE: 0°0'0"				
FULLY TYPE FRECENT INNOTIF	WULK TYE DERCENT INNOTH	ABITAT	CUNTES	HABITAT	HABITAT	MEAN	TOTAL	PERCENT	MEAN	MEAN	MEAN			RSTIMATED	MEAN	MEAN
MEAGURED OCCURRENCE (ft.) I.ENACT (ft.) I.ENACT (ft.) I.ENACT (ft.) I.ENACT OLUNG OLUNG<	MEAGURED CCUURRENCE (ft.) (ft.) (ft.) (at. ft.) MEAG (at. ft.) MEAG 0 RIPPLB 27 61 960 35 4.0 0.2 167 26 422 6 38 57 1317 47 4.5 0.4 137 4539 83 1919 6 800L 23 14 6.9 0.6 174 135 1919 6 900L 12 14 6.9 0.6 174 135 33 1011 12 23 14 6.9 0.6 174 135 1919 101 12 14 6.9 0.6 0.0 0 0 0 0 193 101LIN 12 14 6.9 0.6 174 135 1193 101LIN 12 14 14 14 14 14 14 14 14 101LIN	STINU	FULLY	TYPE	PBRCBNT	LENGTH	LENGTH	TOTAL		DEPTH	AREA			TOTAL	RESIDUAL	SHELTER
Image: constraint of the state of the			(EASURED		OCCURRENCE	(ft.)	(ft.)	LENGTH		(ft.)	(sq.ft.)		(cu.ft.)	AOLUMB	POOL VOL	RATING
0 MLFFLB 27 61 960 35 4.0 0.2 167 26 4.2 0 6 POOL 23 27 3317 4.7 4.5 0.4 197 4539 33 1919 0 6 POOL 23 27 382 14 6.9 0.4 1317 4.5 0.4 1317 1919 0 0 DML 23 27 382 14 6.9 0.6 0.0 0 0 0 0 DML 12 20 140 5 0.0 0.0 0 0 0 0 101 2 14 6.9 0.0 0.0 0 0 0 0 0 101 2 14 6.9 0.0 0.0 0 0 0 0 0 101 2 14 15 14 135 107 107 101 1 1 15 10 10 10 10 10 101 1 1 1 12 10 10 10 10 11 1 1 1 10 10<	0 KIFFLB 27 61 980 35 4.0 0.2 105 1672 26 422 6 POOL 23 27 1317 47 4.5 0.4 197 4539 63 1919 6 POOL 23 27 1317 47 4.5 0.4 197 4539 63 1919 7 23 27 149 15 149 197 2441 135 1919 7 201 12 382 14 6.9 0.8 174 135 1693 7 201 12 0.0 0.0 0.0 0.0 10 10 10 10 10 10 10 10 10 <t< th=""><th>lulb</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>(ag.ft.)</th><th></th><th>(cu.ft.)</th><th>(cu.ft.)</th><th></th></t<>	lulb										(ag.ft.)		(cu.ft.)	(cu.ft.)	
6 FLATMALER 36 57 1317 47 4.5 0.4 197 4539 63 1919 0 6 POOL 23 27 382 14 6.9 0.8 174 135 1893 107 7 382 14 6.9 0.0 10 10 10 10 10 10 10 10 10 10	6 RLATWATER 38 57 1317 4.5 0.4 157 4539 83 1919 6 ROL 23 27 382 14 6.9 0.8 174 135 1803 0 DRY 12 20 14 6.9 0.6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>ء ert</td> <td>D</td> <td>RIFFLE</td> <td>27</td> <td>61</td> <td>980</td> <td>35</td> <td>4.0</td> <td>0.2</td> <td>105</td> <td></td> <td></td> <td>422</td> <td>O</td> <td>0</td>	ء ert	D	RIFFLE	27	61	980	35	4.0	0.2	105			422	O	0
6 2001 23 27 382 14 6.9 0.6 135 1693 107 0 DRY 12 20 140 5 0.0 10 10 10 10 10 10 10 10 10 10 10 10	6 2001 23 27 382 14 6.9 0.4 135 1893 0 DX1 12 20 140 5 0.0 10 10 10	ت ۲	5	PLATWATER	e	57	1317	47	4.5	0.4	197			1919	D	
0 DRY 12 20 140 5 0.0 0.0 10 10 10 11 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>	0 0X 12 20 140 5 0.0 10 10 11 <th< td=""><td>ee *1</td><td>9</td><td>POOL</td><td>23</td><td>2.7</td><td>382</td><td>14</td><td>6.9</td><td>0.8</td><td>174</td><td></td><td></td><td>1893</td><td>107</td><td>22</td></th<>	ee *1	9	POOL	23	2.7	382	14	6.9	0.8	174			1893	107	22
TOTAL TOTAL LENGTH TOTAL AREA TOTAL AREA UNLIFS (F.) (96. ft.) (cu. 11 2819 2819 8651	TOTAL TOTAL LENGTH TOTAL AREA TOTAL AREA TOTAL UNLTS (ft.) (gg. ft.) (gu.) 11 2819 2819 8651	⊧ •k]	0	DRY	12	20	140	ŝ	0.0	0.0	D			0	D	D
UNITS (FL.) (ag. fL.) (a. 11) 11 2819 8653	UNITS (Ft.) (ag. ft.) (ag. ft.) (al. 11 2819 8652	ribu	TOTAL			TOTAL	HISNEIT					TOTAL AREA		OTAL VCL.		
11 2819 8651	11 2819 8653	H ILLS	STINU				(ft.)					(sq. ft.)		(cu. ft.)		
Tables Graphs N	Tables Granhs Ma	°9 rv	11				2819					8653		4234		
hles Granhs I	hles Granhs Ma	Та														
os Granhs I	os Granhs Ma	hle														
Granhs	Granhs Ma	20														
anhs	anhe Ma	Gr														
		anh														
	<i>1</i> a	ne N														

Drainage: Hulbert Creek

Survey Dates: 08/14/97 Table 2 - SUMMARY OF HABITAT TYPES AND MEASURED PARAMETERS

Hulbert Tributary-#174

TATTICE OSCION LONGE ice Location: OUAD onf luo

UAULTS IMAULTAGE MAALTAGE	UMULY TABLIARY MABLIARY MABLIARY <thmabliary< th=""> MABLIARY <th< th=""><th>ALL NULL RAW</th><th></th><th></th><th></th><th>1000</th><th>- Aller and a</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1000</th></th<></thmabliary<>	ALL NULL RAW				1000	- Aller and a											1000
FULNOCCURRINGLENGTHLENGTHLENGTHLENGTHLENGTHLENGTHLENGTHLENGTHLENGTHREFLAREAAREAAREAYOLUNGREFLUCNLGALTONGALTONGALTONGALTONGALTONGALTONGALTONGALTONGALTONGALTONGALTONCurranAND1GU2ftftftftftftftgtftftftgtftftftgtftftgtftgtftgtgtgtftgt<	PULLYTYPEOCCURRENCELENGTHLENGTHLENGTHLENGTHAREAAREAAREAAREAAREAAREAAREANOLUNEMEAACUREDEEE<	THITCH	STINU	HABITAT	HABITAT	MEAN	TOTAL	TOTAL	MEAN	MEAN N	AXIMUM	MEAN	TOTAL	MEAN	TOTAL	MEAN	「「日本」	MERM
MAGURED Image: state indicators Image: state Image:	Image Image <th< th=""><th>STINU</th><th>ATTNA</th><th>TYPE</th><th></th><th>LENGTH</th><th>LENGTH</th><th>LENGTH</th><th>HIGIM</th><th>DEPTH</th><th>HIGHD</th><th>ARBA</th><th></th><th>VOLUME</th><th>VOLUME</th><th>RESIDUAL</th><th>SHELTER</th><th>CANOPY</th></th<>	STINU	ATTNA	TYPE		LENGTH	LENGTH	LENGTH	HIGIM	DEPTH	HIGHD	ARBA		VOLUME	VOLUME	RESIDUAL	SHELTER	CANOPY
Image: feature	Image: form of the state o		MEASURED										. 工约组			POOL VOL	RATING	
0 ICR 27 61 960 35 4 0.2 0.4 105 1672 76 432 0 0 1 GLD 5 43 130 5 6 0.4 0.5 765 102 306 0 0 1 GLD 32 60 1148 41 5 0.4 0.9 251 765 107 306 0 0 1 RIM 2 39 11 8 11 320 201 175 167 175 0 0 1 RIM 2 19 11 8 11.1 316 152 157 167 <	0 1GR 27 61 960 35 4 0.2 0.4 105 1672 36 4.23 1 GLD 5 43 130 5 5 0.4 0.9 255 765 102 306 3 RUN 32 60 1148 41 5 0.4 0.9 255 765 102 306 1 RIM 2 39 39 1 4 0.3 215 125 137 37 0 MCP 2 19 19 1 4 0.3 201 167 166 167 166 166 167 167 167	# ⊔ı			960	ft.	ft.	æ	ft.	ft.	ft.	ag.ft.	sg.ft.	cu.ft.	cu.ft.	cu.ft.		
1 GLD 5 43 130 5 0.4 0.9 255 765 102 306 0 1 GRM 32 60 1148 41 5 0.4 0.9 201 305 90 1715 0 1 GRM 22 39 39 1 4 0.5 125 125 167 167 0 0 MCP 2 19 19 1 8 1.1 3.6 152 157 167 0 0 1 GRM 2 134 5 0 1 3.6 152 157 167 167 0 1 GRM 3 0 1 5 0 1 1<5	1 GLD 5 43 130 5 64 0.9 255 765 102 306 3 KDN 32 60 1146 41 5 0.4 0.9 215 37 37 37 1 KDN 2 39 14 41 5 0.4 0.9 215 37 37 37 1 KDN 2 19 19 1 4 0.3 0.6 152 157 166 116 166 116 166 116 166 116 166 116 166 116 166 116 166 166 166 166 166 166 166 166 166 166 166 16	ہو 19	0	LGR	10	61	980	35	-1"	0.2	0.4	105	1672	YD Pv	422	0	D	
3 KON 32 60 1146 41 5 0.4 0.9 201 320 90 1715 0< 1 610 2 39 1 4 0.3 0.6 125 125 137 37 0 0 MCP 2 19 1 8 1.1 3.6 152 157 167 0 0 1 CMP 2 29 29 1 8 1.19 167 167 0 175 0 1 CMP 2 19 1 5 0.6 1.9 167 167 0 175 1 LMM 5 2 1	3 RON 32 60 1146 41 5 0.4 0.0 201 3820 90 1715 1 GRM 2 39 19 1 4 0.3 0.6 125 125 37 37 37 0 MCP 2 19 19 1 8 1.1 3.6 155 157 167 167 167 1 CMP 2 19 11 8 1.1 3.6 153 167 166 15 169 156 150 150 150 150 150 150 150 150 150 150 150 <td>m Art</td> <td>1</td> <td>GLD</td> <td>IJ</td> <td>њ</td> <td>130</td> <td>ŋ</td> <td>υ</td> <td>0.4</td> <td>0.9</td> <td>255</td> <td>765</td> <td>102</td> <td>306</td> <td>0</td> <td>0</td> <td>93</td>	m Art	1	GLD	IJ	њ	130	ŋ	υ	0.4	0.9	255	765	102	306	0	0	93
1 RIM 2 39 39 1 4 0.3 0.6 125 125 37 37 0 0 MCP 2 19 19 1 8 1.1 3.6 152 157 167 167 0 1 CMP 2 29 29 1 5 0.6 1.45 145 146 116 116 87 1 Imm 5 32 33 3 3 3 3 3 1 Imm 5 32 134 5 0 119 116 116 116 114 1 Imm 5 32 34 5 6 114 135 6 6 114 1 PLP 3 23 46 2 1 1 1 6 126 126 126 126 126 126 126 126 126 126 </td <td>1 RPM 2 39 39 1 4 0.3 0.6 125 125 37 37 37 0 MCP 2 19 19 1 8 1.1 3.6 152 157 167 167 167 1 CMLP 2 29 29 1 6 0.8 1.45 145 116 116 116 1 EMM 8 27 134 5 0.6 1.9 145 146 116</td> <td>0 1</td> <td>L.J.</td> <td>RUN</td> <td>32</td> <td>60</td> <td>1148</td> <td>41</td> <td>IJ</td> <td>0.4</td> <td>0.9</td> <td>201</td> <td>3820</td> <td>90</td> <td>1715</td> <td>0</td> <td>61</td> <td></td>	1 RPM 2 39 39 1 4 0.3 0.6 125 125 37 37 37 0 MCP 2 19 19 1 8 1.1 3.6 152 157 167 167 167 1 CMLP 2 29 29 1 6 0.8 1.45 145 116 116 116 1 EMM 8 27 134 5 0.6 1.9 145 146 116	0 1	L.J.	RUN	32	60	1148	41	IJ	0.4	0.9	201	3820	90	1715	0	61	
0 MCP 2 19 19 1 8 1.1 3.6 152 157 164 164	0 MCP 2 19 19 1 8 1.1 3.6 152 157 167 167 167 1 CMP 2 29 29 1 5 0.8 1.9 145 145 146 116 116 1 CMP 2 29 29 134 5 0.6 1.9 161 804 135 676 1 1 LMM 5 32 7 0.6 1.9 161 804 135 676 1 1 LMM 5 32 346 2 1	 	1	SRN	ы	9 E	99	1	4	0.3	0.6	125	125	3.7	37	O	0	85
1 CBP 2 29 29 1 5 0.8 1.9 145 145 116 116 116 116 116 116 116 114 1 Izdik 5 32 95 5 6 0.8 1.9 161 804 135 676 114 1 Izdik 3 30 59 3 7 0.6 1.9 207 622 119 358 126 2 BP 3 30 59 23 446 2 12 1.0 2.6 2.4 488 213 426 67 67 1 PLP 3 23 446 2 1.2 1.0 2.0 2.0 0.0 0 0 0 0 0 0 0 0 0 0 0 126 126 126 126 126 126 127 127 120 126 <td< td=""><td></td><td>.⊣</td><td>0</td><td>MCP</td><td>13</td><td>19</td><td>19</td><td>1</td><td>60</td><td>1.1</td><td>9.0 19</td><td>152</td><td>152</td><td>167</td><td>167</td><td>D</td><td>40</td><td></td></td<>		.⊣	0	MCP	13	19	19	1	60	1.1	9.0 19	152	152	167	167	D	40	
1 Latent 8 27 134 5 6 0.8 1.8 161 804 135 676 114 1 Latent 5 32 95 3 7 0.6 1.9 207 622 119 358 126 2 Latent 3 30 59 2 5 0.7 1.4 135 271 75 120 88 1 PLP 3 23 46 2 12 1.0 2.6 271 75 150 88 126 67 135 1 PLP 3 23 46 2 2 12 10 2.6 2.4 448 2.13 426 67 67 1 PLP 12 20 140 5 0 0 0 0 0 0 0 0 0 1 1 TOTAL 12 1 10	1 Lati 8 27 134 5 6 0.8 1.8 161 804 135 676 1 1 Lati 5 32 95 3 7 0.6 1.9 207 622 119 358 1 2 Lati 3 30 59 2 5 0.7 1.4 135 271 75 150 1 PLP 3 23 466 2 12 1.0 2.6 224 448 213 426 0<	⊣ Tr	1	CRE	7	29	53	1	IJ	0.8	1.9	145	145	116	116	8 7	0	95
1 Later 5 32 95 3 0 6 1.9 26 119 358 126 2 Later 3 30 59 2 5 0.7 1.4 135 271 75 150 88 1 PLP 3 23 46 2 12 1.4 135 271 75 150 88 1 PLP 3 23 46 2 12 1.0 2.6 234 426 67 67 0 DRY 12 20 140 5 0 <	1 LERN 5 32 95 3 7 0.6 1.9 207 622 119 358 1 2 LERN 3 30 59 2 5 0.7 1.4 135 271 75 150 1 PLP 3 23 46 2 12 1.0 2.6 2.4 448 213 426 0 DRY 12 2.0 140 5 0 0.0 10 10 <td>் ihi</td> <td>1</td> <td>TRE</td> <td>60</td> <td>27</td> <td>134</td> <td>S</td> <td>9</td> <td>0.8</td> <td>1,8</td> <td>161</td> <td>804</td> <td>135</td> <td>676</td> <td>114</td> <td>2.7</td> <td>92</td>	் ihi	1	TRE	60	27	134	S	9	0.8	1,8	161	804	135	676	114	2.7	92
2 Later, 1 3 30 59 2 5 0.7 1.4 135 271 75 150 88 1 PLP 3 23 46 2 12 1.0 2.6 224 448 213 426 67 0 DRY 12 20 140 5 0 0.0 1	2 Lattick 3 30 59 2 5 0.7 1.4 135 271 75 150 1 PLP 3 23 46 2 12 1.0 2.6 2.4 48 213 426 0 DRY 12 2.0 140 5 0 0.0 10 10	m Ita	1	TO BE	υ	27 E	95	с	2	0.6	1.9	207	622	119	л 58 Л	126	с Г	95
1 PLP 3 23 46 2 12 1.0 2.6 224 448 213 426 67 0 DRY 12 20 140 5 0 0.0 0 0 0 0 0 TCTPM LISNGTH LISNGTH LISNGTH LISNGTH AABA TOTAL VOL TCTPM 11 2819 3823 4374	1 PLP 3 23 46 2 12 1.0 2.6 224 48 213 426 0 DRY 12 20 140 5 0 0.0 0 0 0 0 TOTAM Insert Lisert 140 5 0 0.0 0 0 0 0 TOTAM Insert Lisert 161.) 1 1 104.ft) (cu.ft) 11 2819 2819 2813 4374	^N	2	日和田栄	(4)	3 0	59	ы	U	0.7	1,4	135	271	75	150	88	ы	93
0 DRY 12 20 140 5 0 </td <td>0 DRY 12 20 140 5 0 0.0 0</td> <td>° T</td> <td>1</td> <td>рцр</td> <td>μ</td> <td>23</td> <td>46</td> <td>0</td> <td>12</td> <td>1,0</td> <td>2.6</td> <td>224</td> <td>845</td> <td>213</td> <td>426</td> <td>67</td> <td>1 5</td> <td>85</td>	0 DRY 12 20 140 5 0 0.0 0	° T	1	рцр	μ	23	46	0	12	1,0	2.6	224	845	213	426	67	1 5	85
TOTAL Lisner AREA TOTAL UNLTS (ft.) (sq.ft) (cu 11 2819 8923 8923	TOTAL LISNGH LARA TOTAL UNNITS (ft.) (sg.ft) (cu 11 2819 8823	∽ ahlø	O	DRY	12	20	140	IJ	0	0.0	0.0	0	0	Ø	0	O	D	88
UNITS (ft.) (sq.ft) (cu 11 2819 8823	UNITIS (ft.) (sq.ft) (cu 11 2819 8823	TOTAL	TOTAL				LISINGTH	-					AREA	TOT	AL VOL.			
11 2819 8923	11 2019 8823	DNITS	STINIU				(ft.)					Ú,	sg.ft)		(cu . ££)			
c 1	6 M	° anh	11				2819						8823		4374			
		c N																

Table 3 - StumARY OF POOL TYPES Confluence Location: QUAD 1 Confluence Location: QUAD 1 1 1 1 2 Confluence Location: QUAD 1 1 1 2 1 2 - STUMARY OF POOL TYPES PULLY TYPE				Drair	lage: Hu	Drainage: Hulbert Creek	8				
Location: QUAD: UNITS HABITAT FULLY TYPE BASURED WALM 6 WALM 6 SCOUR INITS 0 CC				Surve	ey Dates	Survey Dates: 08/14/97					
UNITS HABITAT FULLY TYPE FULLY TYPE 0 MALW 6 SCOUR LULITS 6	LEGAL DESCRIPTION:	(PTION:		LATIT	LATITUDE: 0°0'0"		TONGITUDE: 0°0'0"	.0.0			
PULLAY TYPE BASURED © MALIN © SCOUR TOTAL UNITES 6	HABLTAT MEAN	TOTAL PERCENT	ERCENT	MEAN	MEAN	MEAN	TOTAL	MEAN	TOTAL	MERIN	ME AM
BASURED e MALYN e SCOUR TOTAL UNLTS f	PERCENT LENGTH	LENGTH	TOTAL	HIDIM	DEPTH	ARBA	ARBA	VOLUME	VOLUME	RESIDURL	SHELTER
TOTAL UNITS	BNCR	Г	I.BYGTH				EST.		EST.	FOOL VOL.	RATING
e Toral UNLTS	(ft.)	(ft.)		(ft.)	(ft.)	(ag.ft.)	(sq.ft.) (cu.ft.)	(cu.ft.)	(cu.ft.) (cu.ft.)	(cu.ft.)	
e INLTES 0	7 19	19	υ	8.0	1.1	152	152	167	167	0	40
	93 2.8	363	95	6.8	0.8	176	2290	133	1726	107	21
	TOTA	TOTAL LENGTE				T	TOTAL AREA	Ĕ	TOTAL VOL.		
		(ft.)					(sq.ft.)		(cu.ft.)		
aphs		2 0 11					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1 8 9 3		

Table 4 - SUMMARY OF MAXIMUM FOOL DEFTHS IN FOOL HABITAT TYPES Table 4 - SUMMARY OF MAXIMUM FOOL DEFTHS IN FACTOR Confluence Location: QUAD: UNITS HABITAT MAX DFTH TYPE HABITAT MAX DFTH TYPE PERCENT MAX DFTH TYPE TYPE TO COCURRENCE DEPTH MAXIMUM PERCENT MAXIMUM TO T C TO							
<pre> Icoation: QUAD: MABITAT <1 FOO TYPE PERCENT MAXIMU TYPE PERCENT MAXIMU GCCURRENCE DEPT GCCURRENCE DEPT Icst</pre>	HABITAT TYPES	Survey Da	Survey Dates: 08/14/97				
HABITAT HABITAT 41 FOOT 41 TYPE FERCENT MAXIMUM PBI HICF 7 0 CRP 7 0 CRP 7 0 LSL 36 0 LSL 21 0 LSR 21 0 LSR 114 0 PLP 14 0	RIPTION:	LATITUDE: 0°0'0"		LONGITUDE: 0°0'0"	.0.0		
TXPEPERCENTMAXIMUNOCCURRENCRDEPTH OCCNCE70NCE360LSR210LSR210LSR140PLP140	1-<2 FT.	1-<2 FOOT 2-<3 FT.	. 2-<3 FOOT	3-<4 FT.	3-<4 POOT	シ=冬 伊密店工	1993年 参考人
OCCURRNCK IICP 7 CRP 36 LSL 36 LSR 21 LSR 21 LSR 14 PLP 14	MAXIMUM	PERCENT MAXIMUM	N PERCENT	MAXIMUM	PERCENT	MAXIMUM	PERCENT
uce 7 cre 7 Lsi 36 Lsr 21 Lsr 21 Ple 14 Ple 14	HIGEO	OCCURRENCE DEPT	DEPTH OCCURRENCE	DEPTH	DEPTH OCCURRENCE	DEPTH O	DEPTH OCCURRENCE
CRP 7 LISL 36 LISR 21 LISR 14 PLP 14	0	0	0		100	D	0
LSR 36 LSR 21 LSR 14 PLP 14	0	100	0	0	D	D	D
LSR 21 LSRF 14 PLP 14	0	100	0	0	0	0	D
LSRF 14 PLP 14	3	100	0	0	0	D	D
PLP 14	0	100	0	0	D	0	0
TYTEL TINITS TATE TATE TATE TATE TATE TATE TATE TA	0	50	1 50	0	Ð	0	0
ry Tables Graph							
≛ Tables Graph							
oles Graph							
Graph							
raph							
h							
S							
Ma							

Confluence Locatio UNITS UNITS MEAGURED SHELTER	Locatic UNITS SHELTER						Surve	Survev Dates: 08/14/97			
UNITS	UNITS SHELTER IEASURED	: GUAD:		LEGAL DESCRIPTION:	RIPTION		LATIT	LATITUDE: 0°0'0"	LONGITUDE: 0°0'0"	"O.0o0 :	
MEAGURED	SHELTER	HABITAT	& TOTAL	& TOTAL & TOTAL	TOTAL	& TOTAL	\$ TOTAL	% TOTAL	% TOTAL	& TOTAL	& TOTAL
	IEASURED	TYPE	UNDERCUT	GWS	LWD	ROOT	TERR.	AQUATIC	WHITE	BOULDERS	BEDROCK
-			BANKS			NASS	MASS VEGETATION	VEGETATION	WATER		LEDGES
ٿو Hul	0	LGR.	D	C	0	0	Ð	b	D	0	0
∽ be	1	OTD .	O	0	Ö	0	0	0	0	0	D
ert	с	RUN	100	0	0	0	O	0	D	0	D
⊣ Cr	1	BRN	0	0	D	D	0	D	0	0	
ee	1	NCP	60	10	0 E	Ö	D	0	0	0	0
₽	1	CRP	0	0	D	O	0	0	0	0	D
ு Tr	5	LSL	6	0	87	0	4	0	0	0	0
 ibı	ñ	LSR	0	0	εe	64	т	0	0	0	D
∾ Ita	61	LSBK	0	0	D	0	0	0	D	100	0
∾ nrv	5	БLP	D	0	100	D	D	D	0	0	0
r Ta	0	DP.Y	0	0	D	D	0	D	D	0	D
bles eted	19		11	1	άĽ	18	67	o	o	m	0
Grau											
ahc	14		6	1	67	18	ę	D	D	m	0

Hulbert Tributary-#174

Drainage: Hulbert Creek

Survey Dates: 08/14/97 Table 6 - SUMMARY OF DOMINANT SUBSTRATES BY HABITAT TYPS

Confluence Location: QUAD:	TOTAL UNITS HABITAT	HABITAT SUBSTRATE TYPE	UNITS MEASURED	∋GIF 2 LGR		ហ		D	1 Tr M	ч	ו ד גנפ ge			٥ able blet	es G ed 1	irap 996	hs	M
LEGAL	& TOTAL	SILT/CLAY	DOMINANT	0	O	40	D	O	0	0	D	0	100	D				
LEGAL DESCRIPTION:	& TOTAL	GNAS	DOMINANT	20	100	O	D	O	100	100	100	50	O	D				
LATITUD	& TOTAL	GRAVEL	TNANTHOG	D	D	60	0	D	0	D	D	50	D	0				
LATITUDE: 0°0'0" LONG	\$ TOTAL	SM COBBLE	DOMINANT	0	O	O	D	۵	0	0	0	D	D	D				
LONGITUDE: 0°0'0"	& TOTAL	LG COBBLE	LNENIMOD	o	0	0	100	D	0	D	D	0	D	D				
	% TOTAL	BOULDER	DOWINANT	D	D	D	D	D	0	0	D	D	0	D				
	\$ TOTAL	BEDROCK	TNANINOG	D	D	D	0	D	O	D	D	D	D	D				

Hulbert Tributary-#174

Mean	Mean	Mean	Mean	Mean
Percent	Percent	Percent	Right bank	Left Bank
Canopy	Evergreen	Deciduous	% Cover	% Cover
89.11	75.21	24.82	54.00	30.33

APPENDIX A. Summary of Mean Percent Vegetative Cover for Entire Stream

APPENDIX B.

Mean Percentage of Dominant Substrate

Dominant Class of Substrate	Number Units Right Bank	Number Units Left Bank	Percent Total Units
Bedrock	1	2	10
Boulder	0	0	0
Cobble/Gravel	3	3	20
Silt/clay	10	10	66.67

Mean Percentage of Dominant Vegetation

Dominant Class of Vegetation	Number Units Right Bank	Number Units Left Bank	Percent Total Units
Grass	0	1	3.45
Brush	2	5	24.14
Deciduous Trees	1	0	3.45
Evergreen Trees	11	8	65.52
No Vegetation	0	1	3.45

APPENDIX C, FISH HABITAT INVENTORY DATA SUMMARY

STREAM NAME: Hulbert Tributary-#174 SAMPLE DATES: SIDE CHANNEL: 65 ft. SURVEY LENGTH: MAIN CHANNEL: 2754 ft. LOCATION OF STREAM MOUTH: USGS Quad Map: Legal Description:

Latitude: 0°0'0" Longitude: 0°0'0"

SUMMARY OF FISH HABITAT ELEMENTS BY STREAM REACH

STREAM REACH 1 (Units 1-56) Channel Type: F4 Main Channel Length: 2754 ft.Evergreen Component: 75%Side Channel Length: 65 ft.Deciduous Component: 25% Riffle/Flatwater Mean Width: 4.4 ft. Pools by Stream Length: 14% Pool Mean Depth: 0.8 ft. Base Flow: 0.0 cfs Water: 59-61°FAir: 65-82°FMean Pool Shelter Rtn: 22Dom. Bank Veg.: Evergreen TreesDom. Shelter: Large Woody DebrisBank Vegetative Cover: 42%Occurrence of LOD: 68% Dom. Bank Substrate: Silt/Clay/Sand Dry Channel: 131 ft. Embeddness Value: 1. 64% 2. 36% 3. 0% 4. 0%

Mean Canopy Density: 89% Pools >=2 ft. Deep: 15% Pools >=3 ft. Deep: 8%

Hulbert Creek Tributary Tables Graphs Map Assessment Completed 1996 Page 9 of 9